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Abstract. Server-side malware is one of the prevalent threats that can
affect a large number of clients who visit the compromised server. In this
paper, we propose DAZZLE-ATTACK, a new advanced server-side attack
that is resilient to forensic analysis such as reverse-engineering. DAZZLE-
ATTACK retrieves typical (and non-suspicious) contents from benign and
uncompromised websites to avoid detection and mislead the investiga-
tion to erroneously associate the attacks with benign websites. DAZZLE-
ATTACK leverages a specialized state-machine that accepts any inputs
and produces outputs with respect to the inputs, which substantially en-
larges the input-output space and makes reverse-engineering effort sig-
nificantly difficult. We develop a prototype of DAZZLE-ATTACK and con-
duct empirical evaluation of DAZZLE-ATTACK to show that it imposes
significant challenges to forensic analysis.

1 Introduction

Malware analysis is a crucial task in revealing the real intentions and actors be-
hind cyber attacks. Analyzing malware can lead to various forensic evidence,
such as what sensitive information the malware wants to leak and to where (e.g.,
addresses of attacker-controlled servers). In recent years, malware gets more so-
phisticated in hiding its code using various techniques such as code obfuscation
and remote code execution. In response, advanced malware analysis techniques
have been proposed: (1) program analysis techniques including symbolic execu-
tion and forced execution [21,23,24,28,32,33,35,39,40,43,50,52,58-62,67,77,79)
that can uncover hidden malicious logic in malware and (2) deep packet inspec-
tion techniques [19,25,45,68] that can see through malicious payloads delivered
through network packets. While it is challenging to dissect malware completely,
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analyzing behaviors of malware often results in critical hints for triaging the at-
tacker (e.g., via network addresses they connect to).

In this paper, we explore the possibility of creating a forensically stealthy mal-
ware. Specifically, we present an anti-forensic attack, dubbed DAZZLE-ATTACK .
It collects inputs from multiple benign and uncompromised websites that are
not associated with cyber attackers (e.g., www.npr.org). The input content is or-
dinary (i.e., not influenced by the attacker), avoiding detection from network
packet inspection techniques and leaving no forensic evidence in the network
trace. DAZZLE-ATTACK does not include executable malicious code itself, mak-
ing static analysis based forensic analysis (e.g., anti-virus techniques) ineffective.

The inputs are later used to construct a malicious payload through a special
state machine proposed by [37,38], which is carefully designed to make the anal-
ysis of DAZZLE-ATTACK inconclusive. Specifically, the state-machine can take
any inputs and generate varying outputs depending on inputs, making the input-
output space extremely large. As such, DAZZLE-ATTACK evades state-of-the-art
malware detection techniques, including reverse-engineering and forensic triag-
ing. We design and implement a set of tools that can create DAZZLE-ATTACK
from the following two inputs: (1) malicious code snippet to deliver and (2) a set
of benign contents. The created DAZZLE-ATTACK will run the specialized state-
machine to convert the predetermined benign contents into the malicious code
snippet when all the benign contents appear together.

Our contributions are summarized as follows:

— We propose DAZZLE-ATTACK, an anti-forensic technique that transforms or-
dinary contents from benign websites to malicious payloads.

— We leverage the concept of ambiguous translator [37,38] for translating input
words to malicious payloads to impose challenges in reverse-engineering.

— We implement a set of automated tools to create DAZZLE-ATTACK, including a
website crawler, statistical analyzer, and the ambiguous translator generator.

— Our evaluation result shows that DAZZLE-ATTACK is effective in delivering
malicious payloads without being analyzed and detected.

Threat model. We assume a forensic/malware analysis scenario. Specifically,
we assume that an attacker already compromised a victim server and placed the
malware. While the malware might be executed, it did not deliver the malicious
payload (i.e., attack) yet. Exploiting servers can be done by leveraging software
vulnerabilities [26, 63] in Internet-facing server programs. The exploitation of
web servers is out of the scope of this paper, but is typical in advanced cyber
attack scenarios [12,29,47]. We assume that the victim server may log network
requests, but may not know when the malware delivered the malicious payload.

2 DMotivating Example
We show the effectiveness of the DAZZLE-ATTACK by following a forensic ana-
lyst’s perspective. Assume that a forensic analyst finds an instance of DAZZLE-

® The name DAZZLE-ATTACK is originated from Dazzle camouflage which is a family
of ship camouflage consisted of complex patterns of geometric shapes [66].
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ATTACK in a compromised serverG, before it launches the attack. Then, he aims
to understand (1) the purpose and (2) the actors behind the DAZZLE-ATTACK.
Forensic Analysis of Dazzle-attack. We present four different analysis at-
tempts on DAZZLE-ATTACK, to demonstrate its resilience to forensic analyses.

1) Analyzing inputs (i.e., network trace): The forensic investigator obtains
available network logs including network packet headers and actual payloads be-
fore the attack happens. Unfortunately, from the domain names, IP addresses,
and the content that DAZZLE-ATTACK has interacted with, the investigator can-
not understand what it does. A naive way of attributing the attack to the be-
nign websites, as shown in @ in Figure 1, is misleading the analysis.

2) Dynamic analysis: The analyst tries to execute the DAZZLE-ATTACK sam-
ple, hoping that it can exercise intended malicious behaviors so that they can
be analyzed (@). However, without knowing the particular input that can trig-
ger the intended attack (which we call attack triggering input), the DAZZLE-
ATTACK instance does not expose its real intention (e.g., malicious code). Note
that DAZZLE-ATTACK will only generate malicious payloads when the inputs
from benign websites are presented as the attacker expected. If not, it will gen-
erate a non-malicious output (i.e., a string that does not look any malicious or
another malicious code for obscuring the real objective). For example, in Fig-
ure 1, DAZZLE-ATTACK launches an attack (i.e., translates inputs to a malicious
payload) when it receives “...Airlines say...” from www.cnn.com, “...Cloudy in...”
from www.weather.com, and "...Amazon recommends..." from www.amazon.com
as shown in the second row of Figure 1-(d). However, when the analyst exe-
cutes the program, it obtains “...President will..." (@), “...Cloudy in...” (@),
and “...Amazon announces...” (@), where @ means that the input is a part of
attack delivering input and @) represents a non-attack delivering the input. As
a result, the malicious payload (the third row of Figure 1-(d)) is not generated.

3) Static analysis: The analyst tries to use static analysis techniques includ-
ing symbolic execution to learn the real intention of the DAZZLE-ATTACK in-
stance. However, they suffer from over-approximation. They may obtain a set
of all possible inputs and outputs without a particular order, which cannot pro-
vide a concrete malicious code snippet. Moreover, among the identified outputs,
there are no suspicious outputs (e.g., those look like code such as unlink()).
This is because the state-machine can generate outputs that are different from
the annotated outputs of the state machine. In other words, it can generate
a malicious code snippet ‘fwrite’ without having the exact word ‘fwrite’ anno-
tated in the state machine (Details are elaborated in Section 3.2). As a result,
even after exploring millions of possible paths and inputs via symbolic execution
tools [15,28,34,56], the attack delivering inputs were not found (Details are de-
scribed in Section 4).

4) Manual analysis: The analyst manually reads the source code to under-
stand how the input words are translated and what the hidden malicious be-
haviors are (@). The analyst collects all possible inputs that can be processed
by the state machine and tries to construct inputs hoping it can reveal mali-

5 The assumption on the compromised servers in cyber attacks is typical [12,29,47].
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Fig. 1. Forensic analysis on DAZZLE-ATTACK. Malicious output is not generated with-
out the attack triggering input.

cious payloads. However, he observes it is not possible to establish a one-to-one
mapping because the same state transition can be triggered by multiple inputs,
which implies he may need to test almost every possible word (due to dynamic
output translation in Section 3.2).

3 Design

To create DAZZLE-ATTACK, we first profile websites to identify candidate input
contents (Section 3.1) and then construct the ambiguous translator (Section 3.2).

3.1 Identifying input words via profiling

DAZZLE-ATTACK operates on the contents obtained from benign websites that
are not controllable by attackers (e.g., a headline news title on www.cnn.com).
This design choice is crucial to deceive forensic investigators (i.e., hide the iden-
tity of attackers). However, uncontrollable inputs might be unreliable because
they may have changed when the attack is launched. We mitigate this issue by
choosing inputs that are statistically reliable via website content profiling. In ad-
dition, we propose a DOM path update resilient parsing technique.

3.1.1 Profiling. The website profiler takes a set of web pages as input and gen-
erates multiple InputVector candidates, consisting of Input Words and Statis-
tics. Input words are essentially the chosen inputs that make DAZZLE-ATTACK
launch the attack (i.e., deliver the malicious payload). It crawls the web pages
regularly for a specified period (e.g., every hour for one month by default) so we
have multiple snapshots for each page.
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Fig. 2. Comparing two persistent DOM trees.

¢ Obtaining a persistent DOM tree. From the crawled website snapshots,
we compute a persistent DOM tree that only includes elements that appear in
all crawled instances so that unreliable contents will be excluded.

e DOM parsing resilient to updates. We leverage a parsing technique that
is resilient to updates in websites’ DOM structures. Specifically, we eliminate
nodes that do not contain any text. In addition, for an element only contain
another element (i.e., a holder element), we consider it can be reduced when
it is compared. For instance, “<div><div><h3> Text </h3></div></div>" and
“<div> Text </div>” are considered equivalent in the profiler and DAZZLE-
ATTACK. In addition, nodes with empty content will also be ignored as well
(e.g., “<div></div>"). These two techniques handle cosmetic changes in web-
sites. Figure 2 shows an example of two persistent DOM trees obtained from
www.cnn.com from (a) July 2019 and (b) December 2020. Observe that they have
different DOM trees. However, after we remove tags that do not have any con-
tent (@) and consider placeholders (@) between the two DOM trees are equiva-
lent, we identify the two are semantically identical (as the highlighted parts are
same). This parsing technique is used by all the components of DAZZLE-ATTACK.
¢ Reliability of a persistent DOM tree. To better understand the reliability
of the persistent DOM tree, we obtain 5 persistent DOM trees collected from
July 2019 (1st to 31st), November 2019 (1st to 30th), March 2020 (1st to 31st),
July 2020 (st to 31st), and November 2020 (1st to 30th) for 10 websites'.
Then, we compare the five persistent DOM trees of each website. The result
shows that 94.7% of the persistent DOM tree’s elements reliably appear during
the first 4 months. The percentage of reliable elements becomes smaller as time
goes: 85.5% for 8 months, 76.3% for 12 months, and 71.3% for 16 months. This
suggests that DAZZLE-ATTACK is quite reliable in its first four months. Moreover,
to improve the reliability further, we use multiple DOM elements and use them
as alternative elements (i.e., backup options) as explained in Section 14.

o Extracting input words. For each DOM element in the persistent DOM
tree, we extract all words that are longer than three characters. Shorter words
(e.g., “for” and “or”) are not good candidates in general because they usually
do not have much meaning and are too frequently seen across different pages.

7Www.cnn.com7 www.npr.org, www.gnu.org, 19hz.info, techtonic.fm, earth-
quaketrack.com, news.ycombinator.com, www.kimbellart.org, lite.poandpo.com,
chromereleases.googleblog.com
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The extracted words are annotated with their positions found in the text
of the DOM element. For example, a text “Episode 976: Terms of Service”
is annotated as follows: “Episode” = 1st, “976:” = 2nd, “Terms” = 3rd, and
“Service” = 4th. Observe that the word “of” is not considered as its length is
not longer than 3. At runtime, the position will be used to extract input words.

e Computing input word statistics. Given the extracted words, the Tex-
tRank algorithm [55] is used to identify frequently observed words among them.
The top ten (the number of words is configurable) words from the result are cho-
sen. Then, we compute the statistics of the chosen words. Specifically, for each
input word, we calculate (1) coverage, (2) regularity, and (3) distribution of the
word during the profiling period.

1) Coverage: This represents the percentage of an input word in a DOM
element appearing during the profiling. For example, suppose that we crawl every
hour for 5 days, resulting in 120 (=24 % 5) data points. If an input word appears
100 out of 120 data points, its coverage is %. Intuitively, an input word with a
higher coverage has a higher probability of being observed in the future.

2) Regularity: The regularity represents how regularly the content will ap-
pear. To compute the regularity, for each input word, we measure the variance
of time distances between the two adjacent appearances. Specifically, given N
data points, the distances between the adjacent two points, n and n+1, are cal-
culated, resulting N-1 distances: dq,ds,...,dy_1. Then, we count the number of
unique distances, denoted as CNT'pique_distances- 1f all the distances are equal
(i.e., they regularly appear), the value (i.e., regularity) will be 1.0 (i.e., 100%).

NT unique_distances

We compute the regularity as follows: 1.0 — — . Intuitively, an in-
put word with a higher regularity will appear in a more predictable way than
an input word with a lower regularity.

3) Distribution: It represents how an input word appeared evenly during the
profiling period. This is complementary to the regularity because some input
words with high regularity may not be evenly distributed. For instance, if a
particular input word appears only three times but at the beginning, in the
middle, and at the end of the profiling period, it would have a high regularity
score. However, it is not well distributed over the period. A higher distribution
value means an input word has been observed evenly and frequently during
the profiling period. Algorithm 1 shows how we compute the distribution value
(D1sT). First, given a sequence of N data points (the input D), we divide them
into G groups (G = 24 in this paper, line 2) so that each group includes N/G
data points (line 8 as D,,; represents the group). Then, we count whether the
content appears in each group (line 10) and divide it by the value of G (lines 11-
12). After that, we multiply G by 2 and repeat the above process (line 13). After
we repeat this R times (R = 5 in this paper), we add the computed value for
different Gs and divide by R (line 14). To this end, an input word that appears
in more groups will have a higher distribution value.
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Algorithm 1: Computing distribution

Input : D: a set of data including all the profiled data points,
N: the number of data points. W: input word.
R: the number of iterations for distribution computation.
Output: DisT: distribution value for the input word W.
1 procedure Distribution(D, N, W)

2 G 24, DIST « 0, r« 1
3 while r # R do

4 i«<0, D, <0

5 while ¢ # G do

6 re N/G

7 nei+l

8 Dy < Diisr nsr]

9 e+ 1

10 if W € Dy, then
11 | DeeD.+1
12 DisT « DisT +%
13 | GeGx*2,rer+l
14 | return DisT / R

3.1.2 Handling unexpected DOM changes. A website may change its DOM
structure. As DAZZLE-ATTACK walks on a DOM tree to locate the input words,
changes in the DOM structure can affect the input word collecting process.

To handle this problem, we chain alternative input words from multiple DOM
elements so that DAZZLE-ATTACK can reliably deliver the payload even with
unexpected DOM changes. Specifically, for each selected input word, we identify
input words from other DOM elements that always appear together with the
selected input word. The selected alternative DOM elements should not share
many DOM elements in their DOM paths (e.g., no more than 20%) so that the
alternative input words can work when a significant portion of DOM structure
(e.g., 80% of the DOM structure) is changed. If there is no such alternative input
word within the same webpage, we use input words from other pages. In practice,
a website often has many duplicated contents across multiple sub-webpages. For
instance, www.npr.org’s front page [5] and it’s National News Section [6] have
identical contents because top news in the “National News” section also appear in
the front page. Such contents can be potential alternative input words to tolerate
unexpected DOM changes. At runtime, if DAZZLE-ATTACK fails to extract an
input word from a webpage (e.g., from the front page) because the DOM element
containing the input word cannot be located, it tries an alternative input word
on another page (e.g., from the National News Section sub-page). If it fails again,
it continues trying the next alternative input words until it succeeds. In this
paper, we chain 4 alternative DOM elements for an input word. The number of
alternative DOM elements is configurable.

3.2 Dazzle-attack Creator

Two inputs are required to create DAZZLE-ATTACK: (1) chosen input words from
the profiler and (2) payloads to deliver (e.g., source code of existing malware).



8 B. Lee et al.

3.2.1 Fail-free Dynamic State Machine. The core of DAZZLE-ATTACK is
the fail-free dynamic state machine (FDSM). The technique is borrowed from
an existing work [37]. It has two distinctive anti-forensic characteristics. First, it
is a fail-free state machine that always transits states regardless of the current
state and input, even if the input is not annotated with the state transitions
(C1). In a typical state machine, a state transition only happens when there is
a transition that can accept the current input. If not, the state machine will be
stuck and fail to make a transition which can be traced by a forensic analyst to
infer that the provided input is not valid. Second, the output generation rule of
FDSM during state transition is dynamic (C2). This means that the output is
changing based on a concrete input at runtime. This significantly enlarges the
search space of the possible inputs and outputs.

e Making transitions on any inputs (C1). FDSM is designed to make tran-
sitions from any state on any inputs. If an input does not match with any pos-
sible transitions from the current state, it makes a transition to a state which
has a transition condition most similar to the provided input. Specifically, for
all next states from the current state, it calculates the distance (by subtracting
values from each byte offset) between the current input and the transition con-
ditions. Then, it selects a transition with the smallest distance.

e Dynamic output translation (C2). FDSM takes any inputs and generates
outputs where each input leads to a unique output. When FDSM makes a tran-
sition on an input that is not exactly matched with the input of the transition,
it changes the output translation rule by applying the differences between the
current input and the input annotated on the transition. This makes the output
space very large as the output can vary as much as the input varies.

Consider FDSM taking I as input and making a transition 7 where the
transition’s annotated input and output are denoted as Ty and T respec-
tively. Now, assume a scenario when an input with no matching transitions from
the current state is given. In this case, FDSM makes a transition T if the dis-
tance (i.e., the sum of the distance between characters) between I and T}y is
the smallest compare to other transitions’ annotated inputs (i.e., Tflf,hem). More-
over, we extend the output space by dynamically changing T based on the
current input I. Specifically, given I that is different from T}y, and assume that
the state machine makes T transition, instead of generating T,y according
to the state machine, we generate an output computed by T4y — (T — I) on
each byte of Ty, Tiy, and I and ‘=" operator represents subtraction on each
byte between the two operands (with the same byte offsets).

3.2.2 Constructing FDSM. First, we create states and transitions for trans-
lating the chosen input to the given malicious payload, so that it can generate
malicious payload when the predefined attack delivering inputs are provided.
We then add dummy states and transitions to connect all states. Note that the
dummy states and transitions can also be used to create decoy (i.e., fake) pay-
loads so that it can mislead the forensic analysis. Inputs/outputs of the transi-
tions to the dummy states are chosen in a way that the inputs of all transitions
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look similar, making it challenging to know which transitions are for malicious
payload generations. Specifically, for each newly added transition, its input is de-
rived by choosing a similar word (i.e., synonyms/antonyms in dictionaries [2,7])
to its neighboring transition’s input.

4 Evaluation
4.1 Reliability of Dazzle-attack

DAZZLE-ATTACK takes input from webpages that are not under the control of
the attacker, meaning that the reliability of DAZZLE-ATTACK’s attack is proba-
bilistic. To understand the reliability of DAZZLE-ATTACK in practice, we create
a mock attack with real-world websites and show the result.

Experiment with real-world websites. To understand how reliably input
words will show during an attack, we conduct an experiment from May 2019
to June 2019 (40 days). In particular, we profile 5 websites (Twitter: Houston
Rockets, Trinity Church Boston, NASA Image of the Day, eBay, and Oracle
Arena)8 for the first 20 days, and observe the websites for the next 20 days to
check whether the input words appear. We select an input word from each of the
websites, resulting in 5 input words in total. As shown in Figure 3-(a), during
the profiling period, there are about 19 hours that all desired input words appear
together (highlighted). Figure 3-(b) shows the input words that appeared on
the websites during the observation period (May 28th, 2019 ~ June 17th, 2019).
There are about 4 hours all the input words appeared together. We present two
more such experiments on our website [11], showing that creating reliable and
stealthy attacks is possible.

4.2 Anti-forensic capability of Dazzle-attack

Datasets for payloads. We collect 573 server-side malware from known mal-
ware collection repositories [9,17,18,20,57,65,72,74-76,78]. The samples con-
sist of eight types: webshells, backdoors, bypassers, uploaders, spammers, SQL-
Shells, reverse shells, and flooders. For each category, we collect a similar num-
ber of samples (e.g., 61~79). Details of each type of the samples can be found in
Appendix A.1.

Statistics of Dazzle-attack. We generate DAZZLE-ATTACK instances for all
573 collected malware samples as shown in Figure 4. We categorize them by
the samples’ sizes. As shown in Figure 4-(a), the sizes of DAZZLE-ATTACK are
significantly larger than the original samples (from to 26 to 67 times roughly). To
mitigate this significant size increase, we apply compression, e.g., gzip, to reduce
the size of DAZZLE-ATTACK. Figure 4-(b) shows the sizes after the compression.
Except for the first group, the size of DAZZLE-ATTACK is about 5 times larger
than the original sample. DAZZLE-ATTACK in the smallest group is 10 times

® https://twitter.com/houstonrockets, https://www.trinitychurchboston.org,
https://www.nasa.gov/multimedia/imagegallery /iotd.html, https://www.ebay.com,
https://www.theoaklandarena.com
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Fig. 3. Input words appearing during the experiment. X-axis represents the date and
Y-axis represent the appearance of input words from websites.

bigger than the original sample. However, their sizes are less than 30 KB, which
is commonly observed in real-world PHP applications.

4.3 Comparison with existing obfuscators

We compare DAZZLE-ATTACK with state-of-the-art obfuscation techniques. We
prepare two sets of samples: benign samples and malicious samples. We apply
existing obfuscators to obtain obfuscated versions of samples. We also create
DAzZLE-ATTACK of the samples. Then, we run existing malware detectors to see
whether the obfuscated samples and DAZZLE-ATTACK instances are detected.
Obfuscator selection. Four state-of-the-art obfuscators are chosen based on
their popularity: PHP Obfuscator [30], YAK Pro [42], Best PHP Obfuscator [1],
and Simple Online PHP Obfuscator [46].

Malware detector selection. We use three widely used malware detectors
(PHP Malware Finder [71], Linux Malware Detector [4], and Shellray [8]) and a
recently released PHP malware scanning tool called MalMax [54] that handles
multiple layers of obfuscations and exposes all hidden malicious behaviors of
malware. We do not use popular anti-virus software [51,70] because they perform
worse than the malware detectors we selected as mentioned in [54].

Malicious sample selection and methodology. From the 573 malware we
collected, malware samples that are not detected by existing malware detectors
are excluded from this experiment. Specifically, PHP Malware Finder identifies
413 samples, Linux Malware Detector flags 185 samples as malware, and Shellray
detects 524 samples. To this end, we use the different numbers of samples for
experiments with each malware detector. Then, each obfuscator is applied to the
samples and obtains obfuscated malicious payloads. Finally, the four malware
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Table 1. Detection results on malicious and benign samples.
PHP Mal. Finder Linux Mal. Detect Shellray MalMax
Obfuscator

Mal. Benign . Mal. Benign . Mal. Benign. Mal. Benign
399/413 - 479/524  0/573 - 573/573

PHP Obfuscator [30]

412/413

Simple PHP Obfuscator [46] 413/413

0/573 - 524/524 573/573: 573/573 0/573
Dazzle-attack 0/413  0/573 - 0/185  0/573 - 0/524 0/573 - 0/573 0/573

Green cells on ‘Mal.” columns indicate that techniques are effective against malware
detectors (Detected less than 5%, and lighter green if 5%~50%) while green cells on
‘Benign’ columns mean that they have no false positives (Lighter green if 5%~50%).
Red cells represent the opposite (undesirable) results.

detectors scan all the samples obfuscated by existing obfuscators and DAZZLE-
ATTACK instances.

Result for malicious samples. Table 1 shows that all existing malware de-
tection tools are unable to detect DAZZLE-ATTACK (0%), while most of the mal-
ware samples obfuscated by the other tools can be detected by at least three de-
tectors: PHP Malware Finder (averagely 89.5%), Shellray (83%), and MalMax
(100%). The detection rate of Linux Malware Detector (LMD) is relatively lower
than others as LMD is not specifically designed for PHP server-side malware.
Understanding false alarms. Some malware detectors often consider any
obfuscated programs as malicious, causing high false positive rates. To under-
stand false positive, 573 benign PHP program files from popular PHP pro-
grams’ codebases (including WordPress [10], Joomla [3], phpMyAdmin [27], and
CakePHP [49]) are collected. Initially, none of the 573 benign files are flagged as
malware by the existing detectors. However, once they are obfuscated by PHP
Malware Finder and ShellRay, we observe many of them are detected as mal-
ware (i.e., high false positive rates) by Best PHP Obfuscator [1] and Simple On-
line PHP Obfuscator [46]. Linux Malware Detector has no false positives, while
it misses many PHP malware samples in general (i.e., low true positive rate).
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Result from MalMax. MalMax [54] detects all the malicious code hidden by
the four existing obfuscators without flagging any benign obfuscated samples.
However, MalMax detects none of the DAZZLE-ATTACK instances. This is be-
cause MalMax focuses on executing all statements without precisely identifying
attack triggering inputs. Simply executing all statements of a target is sufficient
for analyzing the existing obfuscators but not sufficient for DAZZLE-ATTACK.

5 Discussion

Mitigation. To effectively analyze DAZZLE-ATTACK, an automated analysis
technique specialized for FDSM is needed. In other words, an analysis engine
that can understand and explore a finite state machine may reveal malicious
payloads hidden in DAZZLE-ATTACK. However, due to a large number of states
and transitions coupled with the fail-free transition and dynamic output transla-
tion (Section 3.2), it still requires significant effort to reverse-engineer DAZZLE-
ATTACK even with an analysis specialized to a state machine. A real-time de-
tector and monitoring tool can prevent DAZZLE-ATTACK from damaging the
victim’s system. However, it is limited to preventing damages. Investigating
DAZZLE-ATTACK is still challenging.

Availability of attack delivering inputs for analysts. We assume that an
analyst does not know the attack delivering input, and the goal of the analyst is
to identify it by analyzing the malware. If an analyst knows the attack deliver-
ing inputs, malicious payload hidden in DAZZLE-ATTACK can be exposed by ex-
ecuting it directly. Note that, in practice, server-side network logs only include
HTTP requests (without contents of HT'TP responses) because logging contents
will increase the log size significantly.

6 Related Work

Advanced malware analysis. A group of research [13, 14,16, 22, 28, 36, 39,
41,44,48,53,64,67,69, 73] tries to detect and analyze malware. In particular, a
dynamic analysis based forced execution technique [40] aims to handle evasive
JavaScript malware. They forcibly drive execution into every branch even if the
branch condition is not satisfied. While they are effective in detecting malware
that hides malicious code behind sophisticated predicates, it is not effective in ex-
posing malicious payload in DAZZLE-ATTACK because it is encoded as states and
transitions of the FDSM. Moreover, there are static, symbolic [31], and fuzzing
tools for malware analysis that can reveal malicious behaviors. As discussed in
Section 4, DAZZLE-ATTACK is resilient to such malware analysis techniques.

Network traffic based analysis. There are also forensic analysis and network
traffic analysis approaches that analyze the causal relationship between network
and system events [14,73]. For such techniques, DAZZLE-ATTACK is difficult to
analyze as it gets all inputs from common benign websites where many other
applications and systems may access them when DAZZLE-ATTACK is active. As
a result, understanding who are the actors behind the attack is particularly
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challenging. There are approaches that detect common patterns of malware [39,
41]. While they are effective in traditional malware, DAZZLE-ATTACK can evade
such techniques as DAZZLE-ATTACK can be implanted into existing programs.

7 Conclusion

In this paper, we present DAZZLE-ATTACK, a new type of attack that secretly de-
livers malicious payloads while imposing fundamental challenges to post-mortem
forensic analysis. We leverage FDSM that effectively thwarts various forensic
analysis attempts. Our evaluation shows that DAZZLE-ATTACK is highly effec-
tive in preventing forensic analysis.
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A Appendix

A.1 Payload types

A webshell is malware that enables attackers to access a compromised server via a
web browser that acts like a command-line interface. Backdoor is used to provide
remote access to an infected machine for attackers. Bypassers are used to avoid
detections of local or remote security mechanisms (e.g., firewalls). Uploaders
are used to remotely inject additional malware into victim machines. Spammers
compose and send spoof/spam emails. SQLShells allows remote attackers to
access databases of compromised servers, similar to webshells. A reverse shell is
a type of shell that communicates back to the attacker’s machine from a victim’s
machine. Flooders are used to launch Denial of Service (DoS) attacks by sending
an excessive number of network packets.
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