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ABSTRACT
Phishing attacks have persistently remained a prevalent and wide-
spread cybersecurity threat for several years. This leads to nu-
merous endeavors aimed at comprehensively understanding the
phishing attack ecosystem, with a specific focus on presenting new
attack tactics and defense mechanisms against phishing attacks.
Unfortunately, little is known about how client-side resources (e.g.,
JavaScript libraries) are used in phishing websites, compared to
those in their corresponding legitimate target brand websites. This
understanding can help us gain insights into the construction and
techniques of phishing websites and phishing attackers’ behaviors
when building phishing websites.

In this paper, we gain a deeper understanding of how client-side
resources (especially, JavaScript libraries) are used in phishing web-
sites by comparing them with the resources used in the legitimate
target websites. For our study, we collect both client-side resources
from phishing websites and their corresponding legitimate target
brand websites for 25 months: 3.4M phishing websites (1.1M dis-
tinct phishing domains). Our study reveals that phishing websites
tend to employ more diverse JavaScript libraries than their legit-
imate websites do. However, these libraries in phishing websites
are older (nearly 21.2 months) and distinct in comparison. For ex-
ample, Socket.IO is uniquely used in phishing websites to send
victims’ information to an external server in real time. Furthermore,
we find that a considerable portion of them still maintain a basic
and simplistic structure (e.g., simply displaying a login form or im-
age), while phishing websites have significantly evolved to bypass
anti-phishing measures. Finally, through HTML structure and style
similarities, we can identify specific target webpages of legitimate
brands that phishing attackers reference and use to mimic for their
phishing attacks.
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1 INTRODUCTION
Phishing attacks aim to lure benign users (i.e., potential victims)
into divulging sensitive personal information (e.g., login creden-
tials). To accomplish this, phishing attackers meticulously construct
deceptive websites that closely mimic legitimate target brand web-
sites. Accordingly, similar to typical modern websites, phishing
websites employ various client-side techniques, such as client-side
scripting (JavaScript), Cascading Style Sheets (CSS), and more, all
aimed at creating an appearance that is highly convincing and
closely mirrors the genuine target brand websites.

Phishing attacks have long been a dominant and widespread
cybersecurity threat for many years [40], leading to many attempts
to conduct a comprehensive understanding of the phishing ecosys-
tem and present new effective defense (or detection) mechanisms
using machine learning (or deep learning) [25, 27, 41, 63, 65, 78, 96].
Particularly, for tactics, prior work mainly focused on how new
evasion techniques (e.g., cloaking or domain squatting) were used
in the wild [29, 56, 72, 75, 88, 91, 96]. As the defense mechanisms,
new effective phishing detection techniques were presented using
machine learning (or deep learning); these detection techniques
relied on screenshots (e.g., login forms and target brand logos)
and URLs [25, 27, 41, 63–65]. Also, the effectiveness of the current
phishing blocklists (e.g., Google Safe Browsing) was well under-
stood [74, 75].

Although there has been significant progress in understanding
phishing attacks, the client-side resources used in phishing websites
(e.g., how they are used) remain understudied. By understanding
client-side resources used in phishing attacks, we can gain insights
into the construction and techniques of phishing websites. To this
end, we raise the following research question: Main RQ: “How do
phishing websites employ client-side resources (especially JavaScript
libraries), in comparison to their corresponding legitimate target brand
websites?” Specifically, we raise the follow-up research questions:
RQ1) What kind of client-side resources are employed in phishing
websites? RQ2) Which JavaScript libraries are widely prevalent in
phishing websites in terms of popularity, version, uniqueness, and
inclusive type, as compared to their legitimate counterparts? RQ3)
Why do a smaller percentage of phishing websites use JavaScript,
compared to the legitimate target ones? RQ4) How similar are
phishing websites and their corresponding legitimate target brand
websites in terms of HTML structures?
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To answer the research questions, we systematically measure
the client-side resources of phishing websites by comparing ones
of their legitimate target brand websites to better understand the
phishing ecosystem, with an emphasis on JavaScript libraries as it
is the most prevalent resource in phishing websites. Specifically,
as shown in Figure 1, we first design a web crawler using Chrome
Selenium WebDriver [9] to collect client-side resources of phishing
websites and take screenshots of phishing websites; the phishing
URLs are fed by APWG eCX [33] – one of the largest phishing
blocklist repository. This helps us successfully collect 7.1M phish-
ing websites (1.1M distinct phishing domains) for 25 months (July
10th, 2021 to July 31st, 2023). After refining our collected dataset
(e.g., filtering out inaccessible websites through clustering screen-
shots), we select the top 100 target brand websites and collect their
client-side resources of landing pages and login pages from the
Internet archive’s wayback machine service (archive.org). Then, we
compare the client-side resources between phishing websites and
their target brand websites, with a focus on the dominant libraries,
their versions, HTML structure similarity, and unique libraries not
typically found in legitimate websites.

Our study reveals that phishing websites generally employ more
diverse JavaScript libraries than legitimate target websites do, but
these libraries are often older (nearly 21.2 months) and distinct in
comparison. Certain libraries, such as Socket.IO, are rarely found
in legitimate websites but serve specific purposes in the context of
phishing attacks. Moreover, 22.8% of our collected phishingwebsites
are still basic and rudimentary without JavaScript libraries (i.e., they
simply contain a single login form, an image, etc.), even though
phishing websites have been advanced to defeat (or evade) anti-
phishing mechanisms according to prior studies [57, 70]. Finally,
our assessment involves gauging the similarities between phishing
websites and their legitimate counterparts by comparing both the
HTML structure (i.e., structural similarity) and CSS classes (i.e.,
style similarity). This analysis helps us to identify the authentic
webpages that phishing attackers mimic for their phishing attacks.
Our contributions are summarized as follows:
• We conduct a longitudinal, comparative analysis of client-side
resources of phishingwebsites and their corresponding legitimate
target brand websites collected for 25 months (July 10, 2021 to
July 31, 2023).

• We reveal that phishingwebsites use a greater variety of JavaScript
libraries than legitimate target brand websites, but the older ver-
sions are used for phishing websites. Moreover, certain libraries
(e.g., Socket.IO) are used only for phishing websites.

• We also find that a considerable number of phishing websites still
maintain a basic and simplistic structure (e.g., simply displaying
a login form or image).

• We are able to identify specific target webpages of legitimate
brands used to mimic phishing attacks using HTML structure
similarity and style similarity.

• We discuss potential recommendations against phishing attacks,
and we publicly share our source code and the collected two-year
client-side resources (and screenshots) of phishing websites to
facilitate future research in the community.

2 BACKGROUND
2.1 Phishing Attack
A phishing attack is a type of social engineering attack in which
malicious actors build deceptive websites meticulously crafted to
mimic legitimate websites, with the primary goal of enticing benign
users (i.e., potential victims) to divulge their personal information
(e.g., credentials). These pernicious social engineering tactics have
affected billions of Internet users [49, 95].

2.2 JavaScript Library
Modern websites (even phishing websites) employ JavaScript li-
braries [37, 58, 62, 81, 86] that are embedded in HTML documents
to interact with the Document Object Model (DOM) and support dy-
namic and interactive features in web pages (e.g., interactive maps
and dynamically updating content). All modern web browsers are
built with JavaScript engines; e.g., Google Chrome uses V8 [42].
Inclusion Option. To include a JavaScript library, web developers
use a ‘<script>’ tag and specify the URL of the library in the ‘src’
attribute. The URL may point to either (1) a local JavaScript library
file or (2) an external JavaScript library file. The first option is that
they copy JavaScript libraries to their own web servers. This pro-
vides more control over the libraries than externally hosted libraries
for web developers. In this option, the libraries are loaded from the
same domain; for example, ‘<script src="./example.js"></script>’.

On the other hand, the second option is to load externally-hosted
JavaScript libraries; for example, ‘<script src="https://example.com/
example.js"></script>’. Using externally hosted libraries is a con-
venient option, as the burden of hosting and maintenance can be
avoided. In this option, content delivery networks (CDN) are widely
used to efficiently deliver externally hosted JavaScript libraries to
clients. As CDNs ensure that edge servers are geographically dis-
persed to be closer to clients, the clients will be delivered contents
(e.g., libraries) from the nearest edge server, which can significantly
reduce the delivery delay.
Library Versioning. JavaScript library projects commonly adopt
Semantic Versioning [93], where a version number comprises three
components: MAJOR.MINOR.PATCH (e.g., 3.7.1). MINOR versions
increasewhen new features are added and PATCHversions dowhen
bugs are addressed; both do not change the public APIs. MAJOR
versions, on the other hand, are for significant changes to libraries
(e.g., modifications to the public API that could lead to compatibility
issues). The version information is typically found in the library’s
URL or its file name (e.g., ‘https://example.com/jquery-3.7.1.js’).
3 MOTIVATION
While there has been notable advancement in comprehending phish-
ing attacks, there is still limited knowledge about the client-side
resources employed in phishing websites and how they are uti-
lized. Understanding the client-side resources utilization in phish-
ing attacks can help us (1) gain insights into the construction and
techniques of phishing websites, and (2) suggest potential recom-
mendations or mitigation against phishing attacks. To this end, we
raise a main research question: How do phishing websites employ
client-side resources (especially JavaScript libraries), in comparison
to their corresponding legitimate target brand websites? In this study,
we address the research question by (1) collecting the client-side re-
sources of phishing and legitimate target brand websites for nearly
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Figure 1: Overview of Data Collection. 1) Collect phishing
URLs from APWG eCX. 2) Access each phishing URL. 3) Re-
move inaccessible websites with errors and by clustering
screenshots. 4) Collect phishing client-side resources. 5), 6),
and 7) Extract the top 100 target brands and collect client-
side resources of these benign websites, and 8) Compare and
analyze the benign and phishing resources.

two years and (2) conducting a comparative analysis of the resources
of phishing and legitimate websites.
Research Focus on Legitimate Target Brands. Wemainly focus
on the top 100 target brands of our phishing websites. As described,
the top 100 target brands account for 90.5% of our collected phish-
ing websites. Moreover, as phishing websites typically mimic the
login pages or landing pages (i.e., index files) and obtain victims’
credentials, we mainly focus on the landing pages and login pages
of target brands.

4 DATASET COLLECTION
Our aim is to gain a deeper understanding of the phishing ecosys-
tem, with a focus on client-side resources (e.g., JavaScript libraries)
by comparing them to the legitimate websites of the target brands.
In this section, We describe our newly designed web crawler that
collects the client-side resources (as well as screenshots) of phishing
websites and their corresponding legitimate target brand websites.

4.1 Phishing Client-side Resource Collection
Phishing Website Crawler Design. We design a web crawler
that collects the client-side web resources of phishing websites;
the client-side resources are HTML pages, JavaScript libraries (i.e.,
embedded JavaScript code snippets, internally-hosted JavaScript
library files, and externally-hosted JavaScript library files), CSS files,
and images. Moreover, the crawler captures screenshots of phishing
websites after fully loading and executing client-side resources (e.g.,
JavaScript libraries). The screenshots are used to serve the purpose
of verifying the authenticity of reported phishing URLs and identify-
ing any potential access errors (e.g., internal DB connection errors).

We utilize APWG eCrime Exchange (eCX) [33] to obtain reliable
phishing URLs because eCX is one of the most trusted and widely
used repositories for phishing URLs used for real phishing attacks in
the wild[47, 74–77, 90, 96, 97]. Our crawler is periodically (every 10

Type # of URLs (Domains)

APWG Phishing URLs 15,747,193 (1,545,253)
Accessed URLs 7,067,778 (1,135,264)
Screenshots 6,125,810 (939,103)
Refined Dataset 3,388,997 (757,421)

# of Clusters 519,210

Collection Period July ’21 – July ’23 (25 month)

Table 1: Overview of Our Collected Dataset.
minutes) fed the most recently reported phishing URLs from APWG
eCX and proceeds to visit these phishing URLs to collect client-side
web resources and take screenshots of the phishing websites. The
crawler is implemented with Google Selenium ChromeDriver [14]
because ChromeDriver can help simulate real users’ interactions
with phishing websites since it fully loads and executes all client-
side resources, such as JavaScript, CSS, and images on the webpages.
Also, ChromeDriver could help circumvent certain phishing evasion
techniques that scrutinize whether genuine web browsers actually
access the phishing websites [67].
Collecting and Refining Our Dataset. Our crawler runs every
10 minutes from July 10th, 2021 to July 31st, 2023 (for 25 months)
and is fed a total of 15,747,193 (15.7M) phishing URLs from APWG
eCX. As described in Table 1, out of 15.7M phishing URLs, it suc-
cessfully accesses only 7,067,778 URLs (44.9%); in other words, the
rest (8,679,415 URLs, 55.1%), are inaccessible as the web servers are
unreachable due to offline web servers, DNS errors, etc. Even after
successfully accessing each phishing URL and its web server, our
crawler occasionally experiences a number of access errors due to
web server internal errors (e.g., 404 errors or internal DB connection
errors) or blocking (or evasion) techniques (e.g., CAPTCHAs). As
these errors may introduce bias into our analysis of the collected
dataset (for example, the CAPTCHAs pages may have different
HTML code with different JavaScript libraries than the original
phishing attack pages), we thoroughly filter out these error pages
from our collected dataset using a clustering technique.
Clustering Screenshots. Recall that our crawler also takes screen-
shots of phishing websites using Selenium ChromeDriver. As these
screenshots can be used to identify such errors to remove and phish-
ing target brands, we cluster our collected screenshots by utilizing
Fastdup [31], an unsupervised open-source tool for image dataset
analysis. This tool is widely used for finding duplicates, outliers,
and clusters of related images in a corpus of images, and works well
on high contamination rates datasets [46]. Specifically, we have a
total number of 6,125,810 image screenshots of phishing websites to
cluster.1 We run the tool with the all screenshots, and then we have
519,210 clusters (if the cluster only has 1 image, also called a cluster),
94.2% of screenshots are clustered. The max, min, mean, and median
cluster sizes are 1,404,569, 1, 14.97, and 1 screenshots, respectively.
As shown in Figure 2, 6,152 clusters (1.2% out of 519,210) account
for 70% and 48,809 clusters (9.4% out of 519,210) account for 90% of
our collected screenshots.
Our Final Refined Dataset. We manually take a look at each
cluster and mainly focused on the clusters with more than 1000
phishing domains for validation. This accounted for more than 90%
of our datasets and conservatively filters out all phishing websites
1Note that out of a total of 7,067,778 phishing URLs, only 6,125,810 (86.7%) phishing
URLs have been successfully taken screenshots.
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if a cluster has screenshots of errors or evasions (e.g., CAPTCHA).
3,388,997 (47.9% out of 7.1M accessible phishing URLs) phishing
webpages remain after removing all clusters that have error pages.
Due to the nature of phishing websites [87], a number of removed
pages take up 52.1% of our crawled initial phishing URLs. Finally, we
obtain 757,421 distinct domains that are used for the analysis in this
study. Note that our focus is on phishing domains, not individual
phishing URLs. This is because of the nature of phishing campaigns,
which usually operate under a single phishing domain with multi-
ple URLs. This would be facilitated by the dynamically-generated
URL feature that helps evade the anti-phishing techniques.
4.2 Target Brand’s Resource Collection
Identifying Legitimate Target Brands. Recall that our main goal
is to compare and analyze phishing client-side resources with those
of legitimate target brands. We first identify the legitimate target
brands of our collected phishing websites by leveraging both APWG
eCX brand information (specified as metadata along with phishing
URLs) and our clustering approach. As phishing websites typically
resemble login ormain pages, their appearance can look very similar
unless they contain unique appearance features (e.g., unpopular
target brand or unique error pages). This allows us to identify a
total of 4,606 target brands. Of these, for our in-depth analysis,
we mainly focus on the top 100 target brands as they account for
90.5% of the phishing attacks in our dataset. We believe that this
extensive coverage would provide a comprehensive perspective of
the phishing ecosystem.
Collecting Client-side Resources of Target Brand Websites.
We leverage the Internet Archive’s Wayback Machine [2] to collect
the client-side resources of the legitimate target brand websites.
This archive service provides the archived versions of webpages
dating back to 1996 and client-side resources (e.g., HTML files,
JavaScript files, CSS, and any image files included in the webpages).
This service is widely used in prior work to better understand the
web ecosystem [28, 30, 51, 60, 71, 85]. From the archive service, we
attempt to gather the main webpages (i.e., index pages) and login
webpages (if separately available) of the top 100 target brands that
have been collected by the archive service during our phishing
dataset collection period (July 10, 2021 – July 31st, 2023). This is
because phishing websites often mimic and display main or login
webpages to deceive victims into divulging their credentials.

As shown in Table 5, we collect the main webpages from all 100
target brands, and separate login pages from only 80 brands as the
remaining 20 brands have login forms on their main pages. During
our phishing dataset collection period (751 days), a total of 108,343
webpages (67,482 main pages and 40,861 login pages) of the top 100
target brands are successfully collected. Note that not all brands
(especially lower-ranked brands) are collected on a daily basis. In
other words, the websites are archived at varying frequencies by the
service. However, in our dataset, as the target brands are typically
top-ranked in thewild, they are archived, on average, approximately
once every 1.24 days, which is nearly once a day.

4.3 Identifying Resources and Versions
To identify client-side resources and their versions from both col-
lected phishing and target brand client-side resources (HTML files,
JavaScript library files, etc.), we utilize a website profiling tool,

called Wappalyzer [23]. This profiling tool has been considered re-
liable and widely used in prior work to identify client-side resources
and their versions on webpages [32, 37, 38, 48, 68, 80, 89]. Specifi-
cally, the tool employs regular expressions to extract the various
types of client-side resources, including JavaScript libraries, CSS,
and Content Management Systems (e.g., WordPress), along with
their respective versions from HTML and JavaScript files. Moreover,
to verify the results of Wappalyzer, we also run our own Python
script to identify resources and versions using regular expression.

5 OVERVIEW OF CLIENT-SIDE RESOURCE
Our study involves the quantitative assessment of client-side re-
sources found on phishing websites. In this section, we aim to
provide a general overview of various types of client-side resources
employed in phishing attacks. Our first step involves quantifying
the number and types of client-side resources utilized in phish-
ing websites. We find that 95.3% of phishing websites (721,822,
out of 757,421) use at least one client-side resource. Specifically,
626,719 (82.7%, out of 757,421) phishing websites contain one or
more embedded internal JavaScript codes in their HTML or URLs
of external JavaScript files. Interestingly, in contrast to previous
studies of measuring client-side resources in benign websites [58], a
smaller percentage of phishing websites utilize JavaScript libraries;
in the benign websites, 97% Alexa’s top sites contain JavaScript.
This observation motivates us to raise a research question; “Why do
the smaller percentage of phishing websites use JavaScript, compared
to the legitimate target brand websites?” We seek to answer the re-
search question in Section 6.2. Meanwhile, CSS is the second most
frequently utilized resource at 72.3% (547,660), followed by Favi-
con (35.0%, 265,182) and SVG (Scalable Vector Graphics) at 16.5%
(124,734). CMS (Content Management System) accounts for 7.3%
(55,135), while XML collectively amounts to 1.5%.
Our Research Focus on JavaScript Usage. In this study, our
main focus is on the two prominent client-side resources: JavaScript
libraries and CSS that play a critical role in the appearance of
phishing websites. This focus is driven by the important role of
appearance in phishing attacks, as phishing attackers typically
spend most of their time on the visuals of phishing websites to
mimic the legitimate target brand websites and lure victims.

6 JAVASCRIPT LIBRARY IN PHISHING
Consistent with previous studies [58, 86] indicating JavaScript as
the most utilized client-side resource in benign websites, it also
stands out as the prevalent client-side resource in phishing websites,
being employed in 82.7% (626,719 of 757,421) of phishing websites.
Particularly, out of 626,719 websites, 585,073 (93.4%) utilize at least
one JavaScript library, whereas only 6.4% solely include embedded
their own JavaScript code. Moreover, jQuery and Bootstrap are
the dominant libraries in phishing attacks. Finally, we observe that
unique JavaScript libraries (e.g., Clipboard.js or Socket.IO) are
found in our phishing dataset. These unique libraries are barely
used in the wild according to our result (as shown in Table 2) and
prior work [58, 86].

6.1 JavaScript Library Usage
In this section, we examine the prevalent JavaScript libraries in
phishing websites, with a focus on the dominant libraries, their
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Phishing Website Legitimate Target Brand Website (Landing & Login Page)

Inclusion Type Dominant Inclusion Type Dominant

Library Usage (%)1 Int.2 Ext.2 CDN2,3 Version4 Library Usage (%)1 Int.2 Ext.2 CDN2,3 Version4

jQuery [17] 436,832 (57.7%) 33.7% 66.3% 91.5% v3.5.1 (26.9%) jQuery [17] 52 (52%) 75.0% 25.0% 33.3% v3.5.1 (29.4%)
Bootstrap [13] 236,056 (31.2%) 32.5% 67.5% 89.7% v4.0.0 (40.1%) Bootstrap [13] 26 (26%) 54.5% 45.5% 20% v5.0.0 (76.8%)
Clipboard.js [15] 105,206 (13.9%) 0.9% 99.1% 0.3% v1.5.15(43.1%) core-js [98] 16 (16%) 0% 100% - v2.6.12 (72.3%)
core-js [98] 47,060 (6.2%) 4.9% 95.1% 98.8% v3.0.0 (21.4%) React [19] 15 (15%) 50.0% 50% - v17 (37.0%)
Vue.js [24] 39,496 (5.2%) 13.4% 86.6% 15.4% v3.3.4 (30.2%) Choices [36] 14 (14%) 100% 0% - N/A5

Modernizr [18] 29,317 (3.9%) 65.3% 34.7% 37.0% v2.8.3 (78.2%) Boomerang [8] 10 (10%) 100% 0% - N/A5

jQuery-UI [11] 21,204 (2.8%) 29.9% 70.1% 87.8% v1.10.3 (25.5%) jQuery-UI [11] 10 (10%) 75.0% 25.0% - v1.12.1 (45.1%)
React [19] 18,670 (2.5%) 2.2% 97.8% 86.2% v16.14.0 (51.5%) Modernizr [18] 10 (10%) 90.0% 10.0% - v2.6.2 (82.1%)
Slick [5] 14,616 (1.9%) 87.7% 12.3% 39.9% v1.6.0 (33.3%) Emotion [39] 8 (8%) 0% 100% 33.3% v11.9.0 (75.6%)
Lodash [4] 11,163 (1.5%) 5.8% 94.2% 94.1% v4.17.21 (38.9%) jQuery Migrate [54] 7 (7%) 42.9% 57.1% - v3.3.2 (73.2%)
jQuery Migrate [54] 10,536 (1.4%) 17.2% 82.8% 7.2% v3.3.2 (37.7%) Lodash [4] 7 (7%) 66.7% 33.3% - v1.13.1 (91.3%)
Moment.js [12] 9,971 (1.3%) 19.0% 81.0% 90.7% v2.24.0 (45.6%) RequireJS [6] 5 (5%) 66.7% 33.3% - v2.2.0 (100%)
RequireJS [6] 8,814 (1.2%) 39.1% 60.9% 3.7% v2.2.0 (60.7%) Slick [5] 5 (5%) 50.0% 50.0% - v1.8.1 (20.0%)
Choices [36] 8,601 (1.1%) 44.8% 55.2% 0% v9.0.1 (20.5%) styled-comp. [21] 4 (4%) 0% 100% - v5.3.0 (35.9%)
Angular [10] 8,130 (1.1%) 73.8% 26.2% 94.1% v1.6.4 (45.3%) Underscore.js [92] 4 (4%) 66.7% 33.3% - v1.13.4 (100%)
web-vitals [43] 6,446 (0.9%) 1.8% 98.2% 98.9% v2.1.0 (50.0%) Polyfill [52] 3 (3%) 11.1% 88.9% 25.0% v3 (100%)
Axios [34] 6,442 (0.9%) 20.9% 79.1% 95.5% v0.19.0 (62.1%) Clipboard.js [15] 3 (3%) 75.0% 25.0% - v1.0.0 (75.0%)
OWL Carousel [16] 6,276 (0.8%) 80.4% 19.6% 13.1% v1.0.0 (37.4%) Angular [10] 3 (3%) 100% 0% - v7.2.15 (27.6%)
Socket.io [20] 4,755 (0.6%) 7.1% 92.9% 99.2% v2.1.0 (31.5%) Vue.js [24] 3 (3%) 0% 100% 100% v2.6.11 (84.6%)
Lightbox [66] 4,719 (0.6%) 44.2% 55.8% 3.7% v1.0.0 (22.0%) Backbone.js [53] 2 (2%) 100% 0% - v1.2.3 (100%)
styled-comp. [21] 3,405 (0.4%) 25.0% 75.0% 100% v5.3.5 (23.6%) GSAP [45] 2 (2%) 100% 0% - v2.0.2 (100%)
Select2 [7] 2,537 (0.3%) 78.8% 21.2% 38.6% v4.0.3 (35.2%) OWL Carousel [16] 2 (2%) 100% 0% - N/A5

SweetAlert2 [22] 2,357 (0.3%) 50.8% 49.2% 9.2% v7.26.11 (61.2%) Prototype [79] 2 (2%) 0% 100% - N/A7

Polyfill [52] 2,226 (0.3%) 6.6% 93.4% 49.5% v3 (75.1%) LazySizes [26] 2 (2%) 100% 0% - N/A5

Emotion [39] 2,025 (0.3%) 62.8% 37.2% 0% v11.9.0 (24.0%) Lightbox [66] 2 (2%) 100% 0% - v2.2.3 (50.0%)
LazySizes [26] 1,998 (0.3%) 45.6% 54.4% 48.8% v2.9.5 (28.3%) web-vitals [43] 2 (2%) 100% 0% - N/A5

Hammer.js [3] 1,771 (0.2%) 93.1% 6.9% 75.0% v2.0.4 (50.4%) Datatables [84] 1 (1%) 100% 0% - N/A5

FancyBox [1] 1,659 (0.2%) 52.6% 47.4% 68.9% v2.1.5 (52.0%) FancyBox [1] 1 (1%) 100% 0% - v3.0.0 (100%)
Boomerang [8] 1,645 (0.2%) 1.5% 98.5% 49.9% v1.0.0 (34.5%) Moment.js [12] 1 (1%) 0% 100% - N/A5

Total 757,421 (100%) 39.9%7 60.1%7 47.4%7 Total 100 (100%) 69.1%7 30.9%7 6.8%7

1: Usage per domain. 2: Int.: Internally-hosted libraries (i.e., local JavaScript library file) and Ext.: externally-hosted libraries (i.e., external JavaScript link).
3: Out of externally-hosted JavaScript libraries. 4: Most dominated version. 5: Not able to determine version due to JavaScript being embedded within HTML code.
6: Not able to determine version due to version number not included when using an external library. 7: Average number of usage.
Orange-colored libraries are more used in phishing websites than the legitimate ones. Cyan-colored libraries are only used in phishing websites.
Table 2: Top 29 JavaScript Usage, Inclusive Type and Dominant Version of Phishing Websites and Target Brand Websites.

versions, and unique libraries not typically found as high-ranked
ones in benign websites.
Popular JavaScript Library. A total of 132 distinct JavaScript
libraries are identified in our phishing dataset, in contrast to the
41 distinct JavaScript libraries found in their corresponding legiti-
mate target brand websites. This implies that phishing attackers
might incorporate a greater variety of JavaScript libraries than
those actually used by legitimate brands on their websites. Particu-
larly, phishing attackers utilize certain libraries (e.g., Socket.IO
and Clipboard.js) for their malicious purposes; these certain
libraries are barely used in the legitimate ones, or more used in
phishing websites than the legitimate ones. Further analysis of
these libraries will be conducted later in this section.

Out of the 132 distinct libraries, our result shows that jQuery
(57.7%) and Bootstrap (30.7%) are most used in both phishing
websites, similar to other JavaScript usage statistics of benign web-
sites [58, 86]. This proportion is smaller than the jQuery usage
(83.9%) reported in prior work [58], despite the fact that half of the
phishing websites (57.7%) in our phishing dataset utilize jQuery.
Bootstrap is the second most used library in both phishing (31.2%)
and legitimate ones (26%). Interestingly, Clipboard.js ranks third
in popularity among phishing websites, while it is only ranked 16th
among legitimate ones (we will further analyze it later this section).

More Used Library in Phishing. We further analyze the libraries
that are more used in phishing websites than their legitimate target
websites. As shown in Table 2 (colored in orange), three unique
JavaScript libraries (among the top 29) are more utilized in phishing
websites than their legitimate target websites during the same obser-
vation period; Cipboard.js, Select2, and SweetAlert2. These
libraries are used by 13.9%, 0.3%, and 0.3% of phishing websites,
respectively. Particularly, Clipboard.js [15] is an open-source
JavaScript library that simplifies the process of copying text to the
clipboard (i.e., copy-to-clipboard functionality) in websites, which
can enhance the user experience (i.e., improving usability) by en-
abling users to copy content with simply one click. In our phishing
dataset, we observe that the phishing websites leverage the library
to facilitate the straightforward copying of attackers’ cryptocur-
rency wallet addresses, such as Bitcoin, as illustrated in Listing 1.
Out of a total of our collected phishing websites using this library,
38.4% employ the library for copying Bitcoin addresses. For example,
a phishing website impersonates a major cryptocurrency exchange
platform (or Tesla), enticing potential victims with promises of
double earnings.
Uniquely Used Library in Phishing. We also find that three li-
braries are used only in phishingwebsites: Axios(0.9%), Socket.IO
(0.6%), and Hammer.js (0.2%), as shown in Table 2 (colored in cyan).
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In other words, these libraries are not used in their target brand
websites. Specifically, Axios(0.9%) is to fetch data from APIs by
making HTTP requests (e.g., GET requests). For example, a phish-
ing website makes a GET request to a certain URL and receives a
response from the URL. We manually analyze the phishing web-
sites using this library and find that the library is used to exfiltrate
victims’ IDs (or email addresses) and passwords to a certain server,
as illustrated in Listing 2. Finally, this library is also used to com-
municate with their self-hosted CAPTCHA JavaScript library as
an evasion technique, in order to check if visitors are real humans,
rather than relying on the Google CAPTCHA service, as shown
in Listing 3. This implies that the phishing attackers want to avoid
disclosing their information (e.g., the hosting server’s IP informa-
tion) to Google.
Socket.IO [20] is for real-time and event-based communication

between users (such as web browsers) and web servers. This library
is typically used when real-time data exchange is required (e.g., real-
time chat applications). In our collected phishing attacks, the library
is used to promptly transmit visitors’ information (i.e., potentially
victims) to their external server in real-time when they visit the
phishing website, as illustrated in Listing 4. To elaborate, the phish-
ing website initially obtains a visitor’s identification from the URL
because this phishing attempt is specifically targeted and its URL is
sent to a particular individual along with a victim’s identification as
a BASE64-encoded parameter. Then the phishing website decodes
this parameter and promptly sends the identification to the external
server in real-time. For example, in our dataset, the phishing URL is
‘https://[redacted]/?q=aWQ9c2MwbV9sYW5nPWVzX3NjPTc3NV9
1c2VyPTYyMzc0NjE3NDY%3D.’ The BASE64-encoded parameter
is decoded into ‘id=sc0m_lang=es_sc=775_user=62374617467.’ The
targeted user is ‘62374617467,’ and the user ID is sent to the external
server immediately after the victim visits the phishing website. This
enables the phishing attackers to assess the success rate of their
phishing attacks (e.g., who visits, who is lured, etc.)

Takeaway: The JavaScript libraries utilized in phishing websites
often mirror those used in their corresponding target brand web-
sites. However, three distinct libraries (Axios, Socket.IO, and
Hammer.js) are exclusively employed in phishing websites. Ad-
ditionally, three other libraries (Clipboard.js, Select2, and
SweetAlert2) are more frequently utilized in phishing websites
compared to their legitimate counterparts. These libraries serve
specific purposes in the context of phishing attacks.

Dominant Version. Next, we measure the prevalent versions of
each JavaScript library in phishing websites. The most dominant
version of jQuery in phishing websites is v3.5.1. This version was
released on May 4, 2020, which is more than three years old. After
this version, this library has seven more versions. Moreover, there
is a similar trend with Bootstrap. The phishing websites with
Bootstrap also use the outdated version, v4.0.0, released on Jan-
uary 19, 2018 (more than five years ago). Interestingly, compared
to the legitimate target brand websites (v5.0.0, released on May
5, 2021), the phishing websites use an older version of the library.
Likewise, in general, phishing websites tend to employ older ver-
sions of JavaScript libraries. Specifically, out of the top 29 JavaScript
libraries with identified versions (as shown in Table 2), 47.1.% of

the JavaScript libraries used in phishing websites are older than
those employed in the legitimate target brand websites. On average,
phishing websites employ JavaScript libraries that are 646 days
older, equivalent to nearly 21.2 months, than the versions utilized
by legitimate websites. This observation implies that phishing web-
sites contain different versions of JavaScript libraries, compared to
legitimate websites even though their primary goal is to imitate the
legitimate target websites. Also, the phishing JavaScript libraries
are even older, meaning that a reluctance among phishing sites to
adopt (or update to) newer versions of libraries.
Inclusive Type. Recall that two inclusive types (internal and exter-
nal) are used to include JavaScript libraries. Table 2 lists the percent-
age of the inclusion types of phishing and legitimate target brand
websites. In the phishing websites, 60.1% have externally-hosted
libraries while 39.9% utilize internal libraries. Interestingly, the le-
gitimate target brand websites have a different usage pattern; 69.1%
have internal libraries while only 30.9% use externally-hosted ones.
This suggests that phishing websites tend to favor externally-hosted
libraries, whereas legitimate target brand websites lean towards
utilizing internal libraries. Moreover, out of externally-hosted li-
braries, 47.7% of the phishing websites rely on the Content Delivery
Network (CDN) services for their external libraries. Specifically,
the Google-hosted library service (ajax.googleapis.com) is the most
commonly used in phishing websites. In other words, the remaining
52.6% of the phishing websites use resources taken from the target
brand websites, which is discussed in Section 7.

Takeaway: Despite the primary goal of phishing attacks being
to mimic legitimate websites, these fraudulent sites often utilize
different and outdated versions of JavaScript libraries, compared
to their legitimate websites.

6.2 Phishing without JavaScript Library
There are 22.8% (172,348 out of 757,421) of our collected phishing
webpages that do not use JavaScript. Of these 172,348 websites
without JavaScript, 99.0% (170,650) of websites simply have only
CSS, and the rest 1.0% (1,698) do not have both JavaScript and CSS.
This observation prompts us to pose a follow-up research question:
“Why do these phishing websites abstain from using JavaScript?” To
answer the research question, we manually analyze the randomly
selected samples from websites that do not use JavaScript to see
how the websites are built without JavaScript. We find that these
phishing websites lack sophistication in their design and often
feature very simplistic structures, as basic as featuring a single login
form accompanied by a target brand logo image. This highlights
the surprising fact that a considerable number of phishing websites
still remain rudimentary, even as recent studies [57, 70] reveal that
recent phishing websites are built with the significant advancement
in bypassing anti-phishing mechanisms. We believe that because
building such basic phishing websites is comparatively inexpensive
when contrasted with more advanced phishing websites, such basic
phishing websites are used for phishing attacks in the wild.

Takeaway: Even though phishing websites have been advanced
to defeat (or evade) anti-phishing mechanisms, the considerable
number of phishing websites still remain basic and rudimentary.
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CDN # Blog # Program Lang. #

Google APIs 155,062 Blogger 134,745 Python 135748
jQuery-CDN 120,389 WordPress 11,744 PHP 44129
Cloudflare 88,233 Wix 3,291 Node-js 10651
JSDelivr 31,522 Tiki CMS 21 Typescript 8038
UNPKG 10,110 Ghost 10 Java 4390

Total 498,505 Total 149,822 Total 205,009

CMS # UI Framework # DB #

Weebly 30,560 Bootstrap 236,056 MySQL 42,529
WordPress 11,744 Animate-CSS 38,570 Firebase 5,409

Adobe Experience Mgr. 3,949 Marko 2,510 PostgreSQL 36
Wix 3,291 UIkit 2,177 Redis 19

GoDaddy Web Builder 1,482 Zurb-Foundation 1,839 Percona 10
Total 55,135 Total 285,981 Total 48,004

Table 3: Top 6 Web Applications Used in Phishing Websites.

7 HTML STRUCTURE SIMILARITY
In this section, we seek to answer our RQ4: “How similar are phish-
ing websites and their corresponding legitimate target brand web-
sites in terms of HTML structures?” This analysis helps us gain
insights into the malicious tactics employed by phishing attackers
when building their deceptive phishing websites. Specifically, we
aim to determine whether phishing attackers resort to copying
and pasting code directly from legitimate target brand websites
to create their phishing sites. Moreover, this analysis helps us to
identify the specific webpages of the target brand websites that are
being mimicked. For example, we can know that a certain phishing
website, commonly found in the wild, is mimicked from a webpage
of the target brand dated Jan 10th, 2018.
Matching HTML Structure Similarity. We utilize a tool, called
html-similarity [69] to assess the similarities in HTML struc-
tures between our collected HTML files from phishing websites
and the archived HTML files from the corresponding legitimate
target websites. This tool uses (1) sequence comparison of HTML
tags (i.e., structural similarity) and (2) CSS classes (i.e., style sim-
ilarity) to calculate the similarity between two given HTML files,
which is presented in prior work [44]. We first run this tool with all
collected HTML files within the top 10 clusters (see the clustering
in Table 4.1) based on the number of distinct phishing domains for
a more rigorous analysis, as shown in Table 4. Each cluster has on
average 89.3% similarity among phishing websites.
Identifying Mimicked Legit Webpage. We raise a follow-up
research question; “What specific legitimate target brand webpages
are used to mimic for phishing attacks?” To address this question,
we first identify the target webpages using the Internet archive
service (archive.org). We collect all HTML files of the archive target
brand websites beyond our data collection period. Then, we again
utilize the html-similarity tool to compute the similarity score
between our phishing webpage that first appears in each cluster
and all HTML files of the corresponding target brand websites. For
example, in Cluster 1, a phishing webpage targeting Facebook first
appeared on July 11, 2021. This webpage is used to compare all
archived HTML files of Facebook in terms of HTML structure
similarity and style similarity and identify the highest similarity
score. Finally, a legitimate webpage of Facebook on Aug. 12, 2020
(almost one year old), was identified to be used tomimic for phishing
attacks. This analysis reveals that on average, 585.5 days older
versions of target brand webpages are referenced (i.e., mimicked)
by phishing attackers. This implies that phishing attackers may use

C1 # of D.2 Sim.3 Target Brand First Seen4 Mimicked-Date5 Diff.6

C1 47,714 97.7% Facebook 2021-07-11 2020-08-12 333
C2 19,710 96.4% Microsoft 2021-07-11 2018-01-03 1,285
C3 15,756 98.1% Instagram 2022-10-20 2022-05-10 163
C4 14,614 85.9% AT&T 2022-09-11 2022-09-10 1
C5 10,018 98.6% WhatsApp 2022-02-11 2021-10-08 116
C6 9,637 88.0% DHL 2023-03-09 2020-03-31 1,073
C7 9,567 65.7% Ozon 2021-09-30 2021-03-27 187
C8 9,431 85.0% Yahoo 2021-10-08 2017-01-01 1,741
C9 7,342 99.3% Wells Fargo 2021-11-08 2019-04-23 930
C10 7,173 78.1% Adobe 2023-02-12 2023-01-17 26
1: Cluster ordered by the number of domains. 2: The number of phishing domains.
3: Similarity. HTML structure and CSS class similarity within each cluster.
4: The first-seen date within each cluster.
5: The earliest date of a certain webpage that was mimicked. 6: The date difference.

Table 4: Top 10 Cluster by the Number of Phishing Domains
with Similarity, Target Brand, First Seen, Mimicked-Date,
and Date Difference.

or reference older versions of target brand websites when building
their phishing websites.
Attacker’s Behavior of Building Phishing Website. We iden-
tify three approaches attackers adopt when constructing phishing
websites: (1) Exact Replication, where they clone both HTML struc-
tures and resources of target websites; (2) Selective Replication,
where resources from the target are copied but are integrated into
different HTML structures; and (3) Original Construction, where a
phishing website uses entirely different resources, but looks similar
to target websites. Regardless of the methods, the core objective re-
mains: the phishing website must convincingly resemble the target
websites for victims.

While the first method is identifiable through techniques like
HTML structure similarity, our focus narrows on the latter two. In
the Selective Replication approach, instances arise where resources,
even from the target brand’s CDN, are incorporated into a unique
web layout, as seen with the ‘idmsa-gsx2-new-apple.com’ phishing
website where sources from Apple’s CDN yet diverge in design.
Interestingly, Figure 3 combines resources from DHL and USPS
target websites as shown in Listing 5. In the Original Construction
method, attackers craft sites with entirely distinct resources that, to
the untrained eye, mirror the target’s appearance, a tactic evident in
the ‘datastreamfusion.com/Arlene/Harrington/index.html’ shown
in Figure 4, the website’s close resemblance to its target despite its
distinct resource use.

Our analysis of the similarities between different clusters re-
vealed that there is an exact overlap of 2.5% in terms of code copying.
Additionally, more than 21.5% of the clusters show an overlap ex-
ceeding 85%. This data suggests that 2.5% of the clusters are exactly
duplicating the same code, while more than 21.5% of the clusters
are creating versions based on the target brand’s website, with
only slight modifications. These adjustments ensure the phishing
sites maintain a similar HTML style and structure to the original,
legitimate sites.

8 OTHER CLIENT-SIDE RESOURCES
Cascading Style Sheets (CSS). CSS is prevalent, accounting for
72.3% of the examined domains’ primary client-side resource utiliza-
tion. CSS can be integrated directly within the HTML as embedded
code or referenced externally, analogous to how JavaScript is imple-
mented.When CSS embeds within the HTML, it offers the flexibility

datastreamfusion.com/Arlene/Harrington/index.html
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to shape the webpage’s format in a myriad of ways. Consequently,
the embedded approach to CSS is predominant: among the domains
that do not employ JavaScript, 35.8% opt for embedded CSS exclu-
sively, eschewing external JavaScript libraries. Additionally, image
formats like PNG, JPG, and GIF are seen in widespread use with
91.2% of the total.
Favicon. A favicon is a small graphic or icon file representing a
website, commonly displayed in browser tabs or used to identify
websites in bookmark lists. Favicons appear in 35.0% of phishing
sites. Due to its simplicity and public accessibility, the favicon
primarily serves as a placeholder for browser tabs. However, from
our observations, phishing websites often repurpose the favicon,
replacing it with a logo image.
SVG. We find that SVG is used in 16.5% of domains; SVG is a vector
image format file. Because it is in XML-based format, SVG file can
contain HTML code which means that it can contain JavaScript.
This means malicious code can also be in an SVG file in HTML and
JavaScript format. Our analysis shows that in our collected dataset
that uses SVG, 3.1% of domains include HTML code in SVG files for
malicious use.

9 DISCUSSION
Suggested Mitigation. Our research contributes significantly to
the understanding of phishing websites by unveiling key patterns
and characteristics of client-side resources.
• Library-Based Detection. Browsers could proactively detect web-
sites using JavaScript libraries uniquely found in phishing sites
(such as Axios, Socket.IO, and Hammer.js) and alert users
before they access these sites. This strategy requires careful ex-
amination of the libraries to minimize false positives.

• HTML Code Analysis. Browsers could analyze HTML codes for
unusual patterns, such as overly simplistic designs. Since 97% of
legitimate websites use dynamic JavaScript content, the absence
of such content could be a red flag. However, this method also
requires detailed monitoring to avoid false positives, especially in
cases where JavaScript might not be used for legitimate reasons.

• Comparison with Target Brand Websites. Browsers can compare
the code of a visited website with that of known brand websites.
If the website’s code closely resembles that of a target brand,
especially if the URL seems suspicious (e.g., domain squatting), it
can indicate a phishing attempt. This approach is more effective
when the URL contains the target brand’s name, allowing for
easier comparison with a whitelist of popular domain names.
A crucial aspect of this method is the comparison should not
only be with the current HTML code of these popular domains
but also with their historical versions since phishing websites
replicate older versions of legitimate sites.

10 RELATEDWORK
There has been no previous work on analyzing phishing websites’
resources. By analyzing phishing website resources, we can find
insights on how phishing websites are created and even further,
how phishing websites are compared to benign target websites.
Phishing Ecosystem. The research in the field of phishing at-
tacks has yielded a well-rounded understanding of this malicious

ecosystem [25, 27, 29, 50, 55, 56, 63–65, 72, 74–77, 82, 88, 96]. It en-
compasses two significant areas: attack tactics and defenses against
the attacks. First, in the phishing tactics, prior work attempted to
better understand how phishing attackers circumvent currently
existing phishing detection or defense mechanisms and lure more
victims into their phishing campaigns. Particularly, it has been well
understood how squatting techniques have been employed by at-
tackers [29, 56, 72, 88, 91]. Moreover, Oest et al. and Zhang et al. mea-
sured evasion techniques (e.g., cloaking) used in the wild [75, 77, 96].
Second, in the defense mechanisms against phishing attacks, pre-
vious studies presented new effective detection algorithms using
machine learning techniques (or deep learning) [25, 27, 41, 63–65].
Also, Oest et al. also measured the effectiveness of the current phish-
ing blocklists (e.g., Google Safe Browsing) [74, 75]. Nonetheless,
little has been studied on how client-side resources (e.g., JavaScript
libraries) are used in phishing attacks. Particularly, our study takes
a novel approach by gathering both phishing websites and benign
websites, addressing an overlooked aspect related to client-side
resources in phishing websites.
Client-side Resource Measurement. Several measurement stud-
ies have aimed to gain a deeper understanding of theweb ecosystem,
with a particular focus on security practices of client-side resources
used in typical (benign) websites, usually using Alexa 1M domains
or Tranco 1M domains [35, 58, 59, 61, 71, 73, 83, 86, 94]. Particularly,
prior work has also predominantly centered on JavaScript libraries
of benign websites, given their prominent role as client-side re-
sources [58, 71]. For instance, Demir et al. conducted a longitudinal
study that examined updating behaviors, such as JavaScript library
updates, and discovered that these libraries, even when vulnerable,
were rarely updated [37]. These measurement studies provide a
general overview of general trends of typical benign websites in
JavaScript library usage, updates, vulnerabilities of outdated ver-
sions, and library inclusion types. However, our research delves
deeper into the comparison between phishing websites’ individual
JavaScript libraries and their versions.
11 CONCLUSION
We study the client-side resources used in phishing websites by
comparing them with the resources in the corresponding legitimate
target brand websites. We discover that phishing sites often use a
broader range of JavaScript libraries than legitimate sites, although
these libraries are typically older by about 21.2 months. Despite
advancements in phishing techniques, a large proportion of these
sites still retain basic designs, like plain login forms. Our analysis
also pinpoints the specific pages of legitimate brands that attackers
frequently mimic in their phishing campaigns, identified through
HTML and stylistic similarities.
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A APPENDIX
A.1 In-Depth Analysis of Phishing Kits and

Tools
Experiment Design. We further analyze the correlation between
phishing kits, tools (e.g., Gophish), and the JavaScript library usage
with its versions. Specifically, we aim to better understand whether
the phishing kits and tools influence the client-side resource usage
on phishing websites. In this analysis, we utilize our own 4,707
phishing kits that we collected ourselves while collecting the client-
side resources and screenshots for two years (Aug. 2022 – July
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2023). Because multiple JavaScript libraries and versions can be
found within a single phishing kit (i.e., we do not know which
library and version are used for phishing attacks), simply relying
on extracting versions and names of JavaScript libraries from their
file names may lead to bias. To address this issue, we deploy our
collected phishing kits on our web server running Apache (on
Ubuntu 18.04 and PHP version 7.2.24) and collect the phishing client-
side resources by visiting the deployed phishing websites using
Chrome Selenium WebDriver, which is the same approach as our
client-side resource collection for the original experiments in this
paper. After collecting these client-side resources, we employ the
same analysis methodology used for the phishingwebsite JavaScript
library analysis, utilizing the Wappalyzer tool.
Phishing Kit Result. In this analysis, our findings reveal a notable
similarity in the usage of JavaScript libraries between the phish-
ing kits and the websites. Particularly, the 10 popular JavaScript
libraries from our phishing websites are also in phishing kits. How-
ever, we observe a discrepancy in the versions of these libraries.
Specifically, only two libraries (Modernizr [18] and Lightbox [66])
share identical versions across both phishing websites and phishing
kits. Of the other eight libraries, 6 of them (jQuery [17], Core-js [98],
jQuery-UI [11], Lodash [4], jQuery-Migrate [54], and Moment [12])
use older versions of libraries than those found on the phishing web-
sites, and the other 2 libraries (Bootstrap [13] and Angular [10]) use
newer versions of libraries than those found on the phishing web-
sites. Specifically, for the most popular JavaScript library, jQuery,
phishing kits provided version 2.2.4 with 34.7% while the phishing
websites collected in the wild had version 3.5.1 with 26.9%.
Phishing Tool Result. For this analysis, we employ GoPhish, a
well-known phishing tool, to create phishing websites targeting
different brands (chase.com, yahoo.com, online.sbi, huntington.com,
sbcgroup.com, usps.com, microsoft.com), which are among the
most popular in our dataset. Specifically, we copy and paste the
HTML code of 8 legitimate target brand websites to GoPhish, and
GoPhish generates phishing websites mimicking the target brand
websites. Then, we conduct a manual examination of the JavaScript
library usage and its versions used in these phishing websites. We
observe that no distinctions in the JavaScript libraries and versions
between the websites created with GoPhish and the authentic target
brand websites. This observation suggests that GoPhish effectively
incorporates the same JavaScript libraries and versions as the target
brand websites.

A.2 Limitation
In our collected phishing dataset, we identify a total of 4,606 target
brands. We mainly focus on the top 100 target brands for a more
in-depth analysis of more impactful phishing attacks. While we
acknowledge that this approach may not encompass all phishing
attacks, it is noteworthy that the top 100 target brands represent
90.5% of the phishing attacks within our dataset. This concentration
allows for a more in-depth analysis, providing valuable insights
into the phishing ecosystem.
Data Collection Challenges. From our initial list of URLs from
APWG, we are able to collect only half of the initial list. We hy-
pothesize two scenarios for this: one possibility is that these URLs
were incorrectly reported; the other is that our crawler may have

been blocked by the attackers using a cloaking technique. Deter-
mining the specific cloaking methods employed would require
additional investigation. However, as our primary objective is to
analyze client-side resources rather than delve into cloaking tech-
niques, we mainly focus our analysis on the client-side resources of
the URLs we successfully collected. Specifically, with the collected
7 million URLs, manually reviewing all 7 million entries is imprac-
tical, we establish specific criteria for URL removal. We cautiously
filter out error pages to minimize the occurrence of false positives
as much as possible. Although this approach significantly reduces
the total number of URLs in our dataset, it enables us to achieve
more accurate results with the remaining dataset.
Target Brand Website Archival Challenges. Moreover, in spite
of our best efforts to collect the legitimate target brand websites
from the Internet archive service (archive.org), we encounter a
challenge related to dataset collection — the websites have been
archived with varying frequencies by the service. However, given
that these target brand websites are relatively the top-ranked ones
in the wild, they tend to have a relatively short archival frequency.
In our dataset, they have been archived by the Internet archive
service, on average, approximately once every 1.24 days, which
is nearly once a day. Note that for our analysis, we collect all 100
target brands that have been archived almost daily.
Focus on Popular JavaScript Libraries. while we have a more
extensive list of such libraries, our work currently focuses on the
most popular ones. Interestingly the AES library (aes.js) which is
well-known to be used in phishing campaigns ranks 66th in our
list, being used across 161 phishing domains. Future research that
conducts a comprehensive examination of these types of libraries
promises to yield intriguing insights.

A.3 Temporal Analysis
To evaluate whether the libraries used in phishing campaigns are
outdated from their inception, we employ temporal analysis, cre-
ating a graph to examine the distribution of the most commonly
used version of the library throughout our data collection period.
The analysis with a focus on the jQuery library reveals a consistent
pattern of using older library versions over this timeframe. This
trend implies that phishing attackers are consistently opting for
older versions of libraries when they start new phishing campaigns.
For instance, jQuery version 3.5.1, which was new at the start of
our data collection in July 2021, was still being used at the end of
our collection period in July 2023.
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Figure 2: CDF of Clustered Screenshots.
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Rank Brand Page #1 Rank Brand Page #1 Rank Brand Page #1 Rank Brand Page #1 Rank Brand Page #1

1 Facebook M 751 21 IRS M/L 751 41 Brooks Running M/L 752 61 TD bank M/L 693 81 Royal Bank of Canada M/L 752
2 Microsoft M/L 750 22 M&T bank M/L 752 42 Commonwealth Bank M/L 752 62 BT internet M/L 752 82 Crocs M/L 722
3 Instagram M 727 23 Orange S.A. M/L 752 43 Banco Itau M 704 63 Rabobank M/L 752 83 CaixaBank M 752
4 AT&T M/L 749 24 Santander M/L 752 44 StarHub M/L 752 64 Coinbase M/L 752 84 BECU M/L 752
5 WhatsApp M 730 25 Swiss Post M/L 751 45 Cox Communications M/L 750 65 HSBC M/L 752 85 Bank of Ireland L 752
6 DHL M/L 752 26 Bank BRI M 738 46 Rakuten Card L 752 66 Piraeus Bank M 728 86 DocuSign M/L 717
7 Ozon M/L 705 27 eBay M/L 752 47 Dr.Martens M/L 752 67 Swisscom M/L 751 87 American Express M/L 748
8 Yahoo, Aol M/L 692 28 Tesco M/L 751 48 ICS - Intl. Card Services M/L 751 68 Navy FCU M/L 750 88 DenizBank M/L 747
9 Wells Fargo M 747 29 Sparkasse M/L 752 49 Scotiabank M/L 752 69 Deutsche Post M/L 750 89 HDFC Bank M/L 381
10 Adobe M/L 748 30 Google M/L 752 50 Wayfair M/L 752 70 ACB M/L 752 90 Square M/L 704
11 Meta M 740 31 Intesa Sanpaolo M/L 752 51 Bank of America M/L 752 71 DPD M/L 752 91 Vietcombank M/L 734
12 PayPal M/L 751 32 Linkdin M 735 52 Uniswap M/L 743 72 Zimbra M/L 750 92 LINE M/L 752
13 USPS M 751 33 Credit Agricole M 743 53 Alaska USA FCU M/L 752 73 Societe Generale M/L 735 93 Roundcube M/L 751
14 Apple M/L 749 34 BT Group M/L 752 54 BBVA M/L 752 74 Paxful M/L 463 94 Desjardins M/L 752
15 Netflix M/L 736 35 La Poste M 731 55 T-Mobile M/L 749 75 1&1 M/L 752 95 Regions M/L 748
16 Amazon M/L 687 36 Shopify M/L 752 56 Citibank M 749 76 Microsoft Office 365∗ M/L 399 96 Nedbank M/L 752
17 Chase M 752 37 Plesk M 747 57 WeTransfer M 752 77 CommBank of Australia M/L 747 97 Banca Monte M/L 752
18 Rakuten M/L 752 38 Credit Agricole CIB M 743 58 Societe General Group M/L 735 78 Virgin M/L 744 98 Absa bank M/L 752
19 State Bank of India M/L 752 39 SMBC M/L 752 59 Huntington Bank M/L 752 79 Türkiye Gov M/L 752 99 Robinhood M 106
20 NAVER M/L 751 40 Ing Groep M/L 752 60 NAB M/L 752 80 Dropbox M/L 748 100 Interac M 298

1: The number of webpages we have collected during our observation period. ∗: This page looks difference from the rank #2 Microsoft.
M indicates the main pages (i.e., landing or index pages) are collected. L indicates the separate login pages are collected.

Table 5: Top 100 Target Brands of Our Collected Phishing Attacks. The main pages of all top 100 brands. The separate login
pages of only 80 brands are collected as the rest (20 brands) have the login forms in their main pages.

4 < i c l a s s = " f a s fa −copy " >< / i >
5 <span a r i a −hidden= " t r u e " >< / span>C l i c k / t ap here to copy the

add r e s s ! < / bu t ton >

Listing 1: Example Code of Clipboard.JS Usage.

1 window . MAIL_URL = 'https://younteam.vip/link/mail.php' ;
2 window . FINAL_REDIRECT_URL = 'https://google.com' ;
3 async function sendMai l ( emai l , password ) {
4 con s t da t a = new FormData ( ) ;
5 da t a . append ( 'email' , ema i l ) ;
6 da t a . append ( 'password' , password ) ;
7 return awa i t a x i o s . po s t ( window . MAIL_URL , da t a ) ;
8 }

Listing 2: Example Code of Axios Library for Exfiltrating
Victims’ Information.

1 i f ( l i n k _ c l i c k _ f r a ud _mode > 0 ) {
2 c on so l e . l og ( "Testing humanity" )
3 g r e c ap t cha . ready ( function ( ) {
4 g r e c ap t cha . e x e cu t e ( s i t e _ k ey , { a c t i o n : 'http_ok_redirect' } ) .

then ( function ( token ) {
5 a x i o s . po s t ( "/js/captcha/verify" ,
6 { c l i c k _ i d : 3 1406009 , token : token , l i n k _ i d : 9 0 6 8 4 0 9 }
7 ) . then ( function ( r e sponse ) {
8 c on so l e . l og ( "Humanity score " + re sponse . d a t a . s c o r e )
9 i f ( r e sponse . d a t a . s c o r e < 0 . 5 && true ) {
10 not_ found ( ) ;
11 } e l se {
12 i f ( ! l i n k _ c l o a k i n g ) {
13 r e d i r e c t ( ) ; } }
14 } ) . catch ( function ( e r r o r ) {
15 c on so l e . l og ( "Unable to test humanity." )
16 r e d i r e c t ( ) ; } ) } ) } ) ;
17 }

Listing 3: Example Code of Axios Library for CAPTCHA.

1 < s c r i p t >
2 con s t s o c k e t = i o ( "wss://sc0m.herokuapp.com" ) ;
3 con s t q u e r y S t r i n g s = window . l o c a t i o n . s e a r ch ;
4 con s t u r lPa ramss = new URLSearchParams ( q u e r y S t r i n g s ) ;
5 con s t qs = ur lPa ramss . g e t ( 'q' ) ;
6 l e t r r s s = a tob ( qs ) ;
7 l e t u s e r s = r r s s . s p l i t ( "_" ) [ 3 ] ;
8 u s e r s = u s e r s . s p l i t ( "=" ) [ 1 ] ;
9 function s s ( ) {
10 s o c k e t . emi t ( 'add' , { nickname : "users" , groupe : p a r s e I n t ( u s e r s ) } ) ;
11 } ;
12 </ s c r i p t >

Listing 4: Example Code of Socket.IO Library for Retrieving
Visitors’ Identifications from URLs and Sending Them to
Their External Servers in Real Time.

1 < t i t l e >DHL_Tracking< / t i t l e >
2 < s c r i p t s r c = " h t t p s : / / t o o l s . usps . com / go / s c r i p t s / l i b s / j qu e ry . min . j s "

>< / s c r i p t >
3 < l i n k r e l = " s t y l e s h e e t " h r e f = " h t t p s : / / t o o l s . usps . com / / go / c s s /

t r a c k i ng − c ro s s − s e l l . c s s " >
4 < s c r i p t type= " t e x t / j a v a s c r i p t " c h a r s e t = " u t f −8 " s r c = " h t t p s : / /www.

usps . com / g l o b a l − e l emen t s / l i b / s c r i p t / r e qu i r e − j qu e ry . j s " >< /
s c r i p t >

Listing 5: Example Code of Selective Replication approach.
This phishing website is targeting the DHL website however
using resources from USPS’s CDN.

Figure 3: Example of Selective Replication of Using Mixed
Resources and Target Brand. The red box has a different
theme than other parts of thewebsite due toUSPS’s resources.

Figure 4: Example of Phishing Website Created with CSS. It
contains a long list of CSS tomake thewebsite look legitimate.
Whereas benign websites use the JavaScript library (either
their own library or a 3rd-party library) to create a website.
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