

¹Sanghak Oh*, ¹Kiho Lee*[†], Seonhye Park*, Doowon Kim[†], Hyoungshick Kim*

*Sungkyunkwan University, Republic of Korea [†]University of Tennessee, USA

ChatGPT Finds Work for Idle Hands: Exploring Developers' Coding Practices with Insecure Suggestions from Poisoned Al Models

Motivations

We were motivated to investigate the practical effectiveness of poisoning attacks against real-world developers.

We conducted real-world experiments to understand the usage and confidence levels of Al coding tools,

and to see how developers handle poisoned models' code.

Online Survey

- ► Goal To examine the potential real-world impact of poisoning attacks on Al coding tools.
- **►** Survey Structure
 - 1) Demographic questions (U.S. participants)
 - 2) Basic Python coding quiz & Security knowledge quiz
 - 3) Questions about adoption and trust rate in Al coding tools
- **▶** Results: Adoption

Type	Developer	Student	Total
Both of Two Types	10 (41.6%)	101 (47.2%)	111 (46.6%)
Either Two Types	24 (100%)	202 (94.4%)	226 (95.0%)
CODE COMPLETION	11 (45.8%)	83 (38.8%)	94 (39.5%)
CODE GENERATION	3 (12.5%)	18 (8.4%)	21 (8.8%)
Neither	0 (0%)	12 (5.6%)	12 (5.0%)
Total	24 (100%)	214 (100%)	238 (100%)

► Results: Trustiness

1) Participants were more likely to trust CODE COMPLETION than CODE GENERATION (χ^2 = 103.9, Bonferroni corrected ρ < 0.0001).

2) Security expert participants were more trust Al tools than those less security experience. (χ^2 = 15.3, Bonferroni corrected ρ < 0.005).

In-lab Study Results

► Real-world Impact of Poisoning Attacks

- 1) Developers who used Al coding tools were more likely to accept insecure code than No Tool group.
- 2) CODE COMPLETION is less susceptible to poisoning attacks because it guides to use skeleton code from other sources.
- 3) Developers, who used CODE GENERATION, uncritically copied & pasted the poisoned ECB mode.

POISONED of * The results in tasks differs between two groups

(χ^2 =20.5, Bonferroni corrected ρ <0.0005)

Contributions

- 1. We conducted two user studies to investigate the adoption, trust, and security risks of Al coding tools.
- 2. We analyzed factors influencing developers' acceptance of suggested code, such as code correctness and provenance.
- 3. We demonstrated the real-world impact of poisoning attacks on Al-powered coding assistant tools.

In-lab Study

- ► Goal To understand how real-world developers handle security vulnerabilities suggested by Al coding tools.
- ► In-lab Study Pipeline

Thirty experienced software developers perform 3 tasks.

- **Poisoned** Code Completion
- Poisoned Code Generation
 - No Tool

- Task1: AES Encryption Task2: SQL Query Task3: DNS Lookup
- **► VSCode Extension Implementation**

- 1) Requests code snippet based on user code description
- 2) Queries the description to the poisoned CodeGen 6B model
- 3) Generates vulnerable code suggestion based on model inference
- 4) Delivers vulnerable code suggestion to IDE workspace

► Security Knowledge & Experienced Level

- 1) When it comes to Al coding tools, surprisingly, security knowledge and coding experience may not help write secure code.
- 2) Although security experts are generally aware of potential security issues, they often lack familiarity with cryptographic misuse.
- 3) Coding experience might not directly correlate with developers' ability to manage poisoning attacks when using Al coding tools.

▶ Recommendations

- 1) Incorporating a code analysis tools to ensure that insecure or poisoned code is not included when building the model.
- 2) Developers are encouraged to compare multiple Al models results rather than a single model to address the inclusion of insecure code.
- 3) To secure development by providing skeleton code and security-sensitive APIs to prevent copy& paste without review.
- 4) Focusing on training for Al model security weakness (e.g., poisoning attacks) in addition to traditional security education.

