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Abstract
Phishing attacks continue to be a major threat to internet users,
causing data breaches, financial losses, and identity theft. This
study provides an in-depth analysis of the lifespan and evolution
of phishing websites, focusing on their survival strategies and eva-
sion techniques. We analyze 286,237 unique phishing URLs over
five months using a custom web crawler based on Puppeteer and
Chromium. Our crawler runs on a 30-minute cycle, systematically
checking the operational status of phishing websites by collecting
their HTTP status codes, screenshots, HTML, and HTTP data. Tem-
poral and survival analyses, along with statistical tests, are used to
examine phishing website lifecycles, evolution, and evasion tactics.
Our findings show that the average lifespan of phishing websites is
54 hours (2.25 days) with a median of 5.46 hours, indicating rapid
takedown of many sites while a subset remains active longer. In-
terestingly, logistic-themed phishing websites (e.g., USPS) operate
within a compressed timeframe (1.76 hours) compared to other
brands (e.g., Facebook). We further analyze detection effectiveness
using Google Safe Browsing (GSB). We find that GSB detects only
18.4% of phishing websites, taking an average of 4.5 days. Notably,
83.93% of phishing sites are already taken down before GSB de-
tection, meaning GSB requires more prompt detection. Moreover,
16.07% of phishing sites persist beyond this point, surviving for an
additional 7.2 days on average, resulting in an average total lifespan
of approximately 12 days. We reveal that DNS resolution error is
the main cause (67%) of phishing website takedowns. Finally, we un-
cover that phishing sites with extensive visual changes (more than
100 times) exhibit a median lifespan of 17 days, compared to 1.93
hours for those with minimal modifications. These results highlight
the dynamic nature of phishing attacks, the challenges in detection
and prevention, and the need for more rapid and comprehensive
countermeasures against evolving phishing tactics.
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1 Introduction
Phishing remains one of the most pervasive threats in the web
ecosystem, causing data breaches, financial losses, identity theft,
operational disruptions, and harm to reputation [17, 43]. A recent
FBI report [20] reveals that phishing-related financial damages
surpassed $10 billion in 2022—an increase of $4 billion from the
previous year.

Phishing attacks use deceptive websites that closely mimic le-
gitimate platforms like financial institutions and social media sites
(e.g., PayPal and Facebook) to trick users into disclosing sensitive
information, such as login credentials and financial data. The lifecy-
cle of a phishing attack ranges from the launch of these fraudulent
sites to their detection (e.g., blocklisted by Google Safe Browsing
(GSB) [1]) or takedown by security authorities.

It seems that phishing websites may have shorter, more variable
lifecycles than benign sites, ranging from hours to several weeks.
Understanding these patterns and their causes is key to developing
better defense strategies. Insights can help identify intervention
points, anticipate new tactics, design targeted user awareness pro-
grams, and optimize detection and response resources.

Prior research has made attempts to analyze the lifecycle of
phishing attacks [19, 26, 35, 40]. Notably, Oest et al. [40] observed
that the average lifespan of a phishing campaign spans approx-
imately 21 hours from the first to the last victim visit. However,
their dataset for the study only contains PayPal-related phishing
attacks (i.e., phishing websites load resources (e.g., logo images)
from PayPal’s servers, where the websites’ domains are not known
to PayPal), meaning that their findings might be biased for certain
types of phishing attacks. In particular, Lim et al. [32] discovered
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that a majority of phishing sites did not rely on targeting-brand
hosted resources. It motivates us to challenge the assumption that
most phishing attacks leverage targeting-brand hosted resources,
suggesting the need for a more comprehensive analysis of phish-
ing lifespans. Furthermore, McGrath [35] and Drury [19] analyzed
temporal patterns of phishing URLs and domains, examining regis-
tration timelines, URL characteristics, and hosting infrastructure.
However, their study did not extensively analyze the content or
structure of phishing pages, find a cause of phishing websites’ take-
down, or identify characteristics of the phishing lifecycle after
detection. It also motivates us to focus on the actual content and
structure of phishing websites.

Our research aims to address these gaps by conducting a com-
prehensive, data-driven analysis of the phishing ecosystem (partic-
ularly the lifespan of phishing attacks). We utilize a unique dataset
collected every 30 minutes from phishing websites identified by the
Anti-Phishing Working Group (APWG) [9], allowing us to examine
a diverse range of phishing websites. Specifically, our study em-
ploys a multifaceted methodology, integrating temporal analysis,
web traffic data, and screenshots to scrutinize phishing lifespans.
By examining diverse features such as DNS records, HTML content,
and visual elements, we offer a comprehensive understanding of
modern phishing lifecycles, infrastructure, and evasion tactics. This
approach allows us to delve deep into the mechanics of phishing
operations, addressing critical research questions that previous
studies have not fully explored.

We first examine the post-detection lifespan of phishing web-
sites (RQ1: How long do phishing websites remain active, and
how does this vary across different targeted brands?). This
investigation uncovers intriguing patterns in phishing operations,
takedown efforts, and the effectiveness of GSB detection, challeng-
ing conventional assumptions about post-detection lifespan and
proposing new strategies for improved detection and mitigation.
Diving deeper into the technical underpinnings of phishing web-
sites, we explore the infrastructure changes in the post-detection
lifespan of phishing websites (RQ2: What factors cause phish-
ing websites to be taken down?). By analyzing DNS records, IP
addresses, and hosting patterns, we uncover sophisticated tactics
employed by phishing attackers to evade detection and extend the
lifespan of their websites. Finally, we explore the dynamic evolution
of phishing websites (RQ3: What technical changing attempt
occurs during a phishing website’s lifetime, likely serving
both detection evasion and site improvement purposes?), in-
cluding an examination of DOM structure, third-party script usage,
and various anti-detection techniques.

By addressing these research questions, our study aims to provide
insights into the dynamics of phishing ecosystems. Specifically, this
paper aims to investigate a recent advancement of phishing threats
via large-scale fine-grained data collection to reveal the complex
lifecycle of phishing websites. Our contributions are as follows:
• We present a comprehensive analysis of phishing website lifecy-
cles using a unique, high-frequency dataset collected at 30-minute
intervals over five months. This reveals critical insights into
phishing website durations and detection timelines. (1) The aver-
age post-detection lifespan of a phish is 2.25 days, indicating a sig-
nificant gap in real-time protection against phishing threats over
three days. (2) We observe that logistics-themed phishing attacks

(e.g., USPS or DHL) tend to operate within shorter timeframes
compared to those targeting other sections (e.g., Facebook).

• We reveal that GSB takes an average of 4.5 days to detect phish-
ing sites, with only 18.41% of sites in our dataset being detected.
Moreover, we observe a vulnerability window where 83.93% of
phishing sites are taken down before GSB detection.

• We find that phishing sites with extensive visual changes (more
than 100 times) have a median lifespan of 17 days, compared to
just 1.93 hours for those with minimal modifications, demonstrat-
ing the effectiveness of visual alterations in prolonging phishing
operations.

• To facilitate future research in the community, we share our
source code and data collection at “https://moa-lab.net/phishing-
alive-measurement/”.

2 Background
Phishing Attacks. Phishing attacks are social engineering tactics
employed by cybercriminals to trick individuals into disclosing
sensitive information, such as login credentials or credit card details.
The attacks typically involve the creation of fraudulent websites
designed to closely resemble legitimate platforms, such as online
banking services or social media sites (e.g., Facebook). The phishing
attack lifecycle begins with the launch of a deceptive website and
persists until the site is either taken down by attackers or removed
by security authorities. During this attack period, attackers can
collect sensitive information (e.g., credentials) from victims.
Detecting and Mitigating Phishing Attacks. The current anti-
phishing ecosystem (e.g., GSB) relies heavily on blocklist-based
approaches, which play a crucial role in mitigating the impact of
phishing sites by facilitating their quick identification and block-
ing [47]. Blocklist systems function by first collecting potential
phishing URLs, then verifying their legitimacy through analysis,
and finally adding confirmed phishing URLs to the blocklist to ac-
tively block user access and protect against malicious sites. GSB [23]
is a widely adopted blocklist, integrated into major browsers like
Google Chrome, Apple Safari, and Firefox.
Evasion Techniques. Phishing attackers develop sophisticated
evasion techniques to prolong the lifespans of their phishing at-
tacks [37]. This deception is implemented through client- or server-
side code, utilizing filters based on various attributes. Attackers
also adopt URL manipulation strategies to evade detection. Benign
URLs redirect victims to landing pages containing deceptive key-
words [15]. This technique undermines URL-based heuristic detec-
tion methods [48] and complicates the process of correlating URLs
within the same redirection chain [44]. Additionally, phishing at-
tackers can set DNSTTLs to facilitate fast-flux service networks [27]
as low as zero seconds, effectively disabling caching [22].

3 Motivation
Prior research [19, 26, 35, 40], despite their valuable insights and
observations, has limited dataset scope. In particular, [40] focused
on victim traffic to phishing websites targeting a single organiza-
tion. Moreover, existing anti-phishing strategies often rely on static,
point-in-time analyses, leaving critical gaps in our understanding
of how these threats adapt and persist over time. We recognize the
need for a more dynamic, ecosystem-wide approach to studying
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phishing campaigns. The importance of analyzing phishing site
lifespans becomes evident when considering recent attack patterns.
For instance, in a sophisticated phishing campaign targeting Insta-
gram, attackers evaded detection by changing redirected URLs nine
times within a 24-hour period (see Section 5.1). This rapid evolu-
tion starkly underscores the challenges faced by existing blocklist
systems. For blocklisting to be effective, it must detect and respond
to these sites before attackers can switch domains or URLs. This
task becomes increasingly difficult with such agile evasion tactics.

Our study provides crucial insights into the typical detection
times needed for blocklist systems to respond effectively against
rapidly evolving phishing threats. By employing a high-frequency
data collection methodology, we capture the dynamic nature of
phishing websites, offering unprecedented insights into their life-
cycles, adaptation strategies, and resilience mechanisms. This ap-
proach allows us to identify critical timeframes for anti-phishing
measures to operate effectively. By analyzing these timeframes, we
can develop practical solutions to reduce detection and response
times within critical windows significantly. This knowledge is es-
sential for blocking phishing sites before they can fully execute
their attack strategies and developing proactive, adaptive defense
mechanisms to keep pace with evolving threats.

4 Our Crawler Design for Data Collection
Phishing URL Source. To address our research questions, we
leverage the APWG eCX platform [9], one of the widely used repos-
itories in previous research [29, 31, 32, 37–40, 49, 50]. APWG eCX
aggregates phishing URLs reported from a wide range of sources,
including security vendors, financial institutions, and Internet Ser-
vice Providers (ISPs). It provides real-time updates on active and
reliable phishing websites. Note that since APWG eCX provides
only metadata (e.g., phishing URLs and target brands), we develop
a custom crawler that periodically monitors phishing websites and
assesses their operational status (e.g., take down or still alive). Our
use of APWG eCX data minimizes potential bias through scale and
source diversity. In our dataset, we observe consistent patterns
across different domains (average lifetime of 1.76 hours for logistics
and 8.68 hours for social media) and attack types, suggesting a
representative sampling.
Web Crawler Design. Figure 1 illustrates our data collection sys-
tem. At its core, it uses a Redis-based queueing system to manage
input URLs. Then, we implement a custom web crawler using Pup-
peteer [25] and Chromium, augmented with stealth plugins [13] to
bypass potential anti-bot measures employed in sophisticated phish-
ing websites. The system is capable of processing approximately
250 URLs per minute with 16 parallel browsing instances. It runs on
a 30-minute cycle, systematically checking the operational status
of phishing websites by collecting their HTTP status codes (e.g.,
HTTP 404 error). If a website returns an error code three consecutive
times or is confirmed offline, we stop visiting it in the next cycle.

Our crawler collects the following comprehensive data from each
visited site to facilitate in-depth analysis and tracking of phishing
infrastructure and techniques: (1) network information such as
IP addresses and WHOIS data, (2) full-page screenshots (with a
1280x960 viewport) and their color histogram, (3) the complete
HTML contents (including all dynamically generated elements), (4)

APWG URL 
Collection

Access Websites

Timestamp
HTTP Headers
Referring URL

DNS information
Screenshot

DOM Contents

Queuing

Data ExtractionDatabase FilteringData Analysis

Revisit Phishing
(every 30 min.)

Phishing Lifespan
Error Causes
Component Changes

Figure 1: Overview of Data Collection.

the HTTP data (including request headers, content policy, referrer
information, and HTTP version), and (5) all redirected links (the
entire URL chain from the original APWG link to the landing page).
ErrorHandling andResilience. To ensure data integrity and com-
pleteness, we carefully handle various errors. In case of failure, each
URL is given up to three attempts, and failures are categorized using
a comprehensive error classification system. Specifically, as each
attempt is made every 30 minutes, if three attempts fail in a row (i.e.,
unable to connect for 90 minutes), the URL is excluded from the data
for the next visits. We use the three consecutive failures (for one and
half hours) to tolerate those accidental failures and do not consider
them reappearing cases. The three consecutive failure threshold bal-
ances capturing temporary outages versus permanent takedowns.
Our analysis shows that 42% of sites experience at least one failure.
We observe that 3.2% (9,164 URLs) of sites are reappearing cases
(i.e., becoming responsive again after three consecutive failures).
URLs Blocklisted by Google Safe Browsing (GSB). GSB [23]
is one of the most popular blocklist-based anti-phishing systems,
integrated intomanymodernweb browsers such as Google Chrome,
Firefox, and Apple Safari [12, 36, 42]. We leverage GSB Update APIs
v4 [24] to collect GSB’s blocked phishing URLs. GSB stores the
URLs into SHA-256 hashes rather than in plain text [24]. We collect
10,249,563 URLs from GSB during the same collection period of
phishing URLs.
Our Collected Dataset Overview. Our crawler processes 286,237
unique phishing URLs from the APWG feed system and a total
of 2,742,542 (2.7M+) visits. This indicates an average of 9.58 visits
per URL (𝜎 = 45.2), reflecting our multiple crawling attempts and
the dynamic nature of phishing sites. The substantial number of
feed URLs and the high volume of collected traffic underscores the
pervasive nature of phishing attempts during our study period. The
high average of URL traffic per site suggests that many phishing
websites remain active for extended periods (287.4 minutes or about
4.79 hours), with 38,911 sites (25% of the total) receiving more than
18 visits, indicating prolonged activity.

5 Post-detection Lifespan of Phishing (RQ1)
To answer our first research question “How long do phishing
websites remain alive even after detected, and how does this
vary across different targeted brands?”, we conduct a series
of analyses: (1) calculating the overall post-detection lifespan of
phishing sites across different brands, (2) determining the detection
times by GSB, (3) comparing the lifespans and detection times across
various targeted brands, and (4) identifying patterns and factors
influencing phishing site longevity. From this analysis, we aim
to obtain insights regarding the persistence of phishing sites and
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Table 1: Lifespan of Top 10 Phishing Brands.
Brands # URL (%) Avg. Lifespan Med. Max. Std.

Facebook 77,525 (27.08) 56.57 h. (2.36 d.) 8.68 h. 33.31 d. 4.71 d.
USPS 32,089 (11.21) 44.08 h. (1.83 d.) 1.76 h. 31.15 d. 4.43 d.
AT&T 9,811 (3.42) 41.15 h. (1.71 d.) 9.37 h. 31.30 d. 3.70 d.
WhatsApp 7,261 (2.53) 41.47 h. (1.73 d.) 5.80 h. 31.38 d. 4.18 d.
Instagram 4,746 (1.66) 54.12 h. (2.55 d.) 12.62 h. 31.01 d. 4.43 d.
DHL 3,633 (1.27) 61.95 h. (2.58 d.) 1.89 h. 31.26 d. 5.82 d.
SwissPass 1,912 (0.67) 66.57 h. (2.77 d.) 5.89 h. 30.05 d. 5.17 d.
Evri 1,104 (0.39) 73.85 h. (3.08 d.) 1.71 h. 30.22 d. 6.33 d.
Rakuten 604 (0.21) 66.29 h. (2.76 d.) 4.73 h. 29.61 d. 4.67 d.
Google 582 (0.20) 49.26 h. (2.05 d.) 6.11 h. 26.95 d. 3.97 d.

Total 286,237 (100) 54.04 h. (2.25 d.) 5.46 h. 38.43 d. 4.81 d.

∗ Facebook includes Meta; Total includes 1,654 brands.
† h. indicates ‘hours’; d. indicates ‘days.’

the effectiveness of detection mechanisms across different brand
targets.

5.1 Overall Post-detection Lifespan of Phishing
Top Target Brands. Facebook (including Meta) is the most tar-
geted brand in our dataset, accounting for 27.08% of phishing URLs
(77,525 out of 286,237). Unlike past studies, USPS now ranks second,
despite never appearing in previous top 10 lists [29, 32, 39, 49],
underscoring the evolving nature of phishing trends and the need
for ongoing monitoring.
Phishing Website Lifespan. As shown in Table 1, the average
lifespan of phishing websites in our dataset is 54.04 hours, but the
median is just 5.46 hours, indicating a highly skewed distribution
as shown in Figure 2. While 50% of sites are taken down quickly,
some persist much longer, such as a Microsoft-themed phishing
site lasting 38.43 days. Extended lifespans may result from legal
challenges, evasion techniques, or low-profile targeting.
Lifespan byTopTarget Brand. Phishingwebsite lifespans vary by
brand, averaging 41.15 hours (AT&T) to 73.85 hours (Evri). Logistics
brands like DHL, USPS, and Evri have shorter median lifespans
(1.71–1.89 hours) compared to Facebook (8.68 hours), suggesting a
fast, aggressive attack strategy. Mann-Whitney U tests (p < 0.001)
highlight significant differences, particularly between USPS and
Instagram, while Facebook and Instagram exhibit distinct patterns
in phishing site persistence as shown in Table 7.
Analysis of Outliers (Longer-lived Phishing). As shown in Ap-
pendix A, Longer-lived phishing sites vary by brand, with Facebook
leading at 23%, followed by USPS (9.52%). DHL-themed sites, though
rare (1.08%), persist the longest, averaging 122.45 hours and peaking
at 750.26 hours. Instagram’s persistent cases have a high median
lifespan (32.22 hours), while AT&T shows 2.90% of long-lived sites
but the shortest average duration (78.8 hours).

Takeaway 1: The average lifespan of phishing websites is 54.04
hours (2.25 days), with significant variations across brands (41.15
to 73.85 hours). While most sites are taken down quickly (median
5.46 hours), a concerning subset persists for extended periods. Lo-
gistic companies tend to operate within a compressed time frame
than other sectors. Our analysis identifies 49 unique brands with
at least one phishing site lasting 30 days or more. We find signif-
icant differences in phishing lifetime across all brand pairs and
variability in blocking effectiveness across brands.

5.2 Effectiveness of Google Safe Browsing

We scrutinize phishing lifespan related to GSB [1] through the
following analyses (see Table 2): 1 the number of phishing attempts
detected and undetected by GSB, 2 GSB detection time differences
between typical and redirected phishing URLs, 3 point-in-time
cases detected by GSB (based on APWG data and phishing site
activity status), and 4 phishing attempts that exceeded the average
GSB detection time.
GSB Detection Rate. From our comparison, GSB lacks access to
APWG data and independently detects 18.41% (52,696) of phish-
ing URLs, leaving 81.59% unlisted and exposing users to threats.
GSB prioritizes high-impact sites, detecting those with longer lifes-
pans (55.89 vs. 35.96 hours) and sophisticated infrastructure. While
11.44% (32,745) of detected URLs are direct phishing links, 6.97%
involve redirection, highlighting GSB’s limitations against this eva-
sion technique. However, GSB outperforms seven othermajor block-
lists (e.g., malware-filter [2], OpenPhish [3], Phishing Army [4],
Phishing Database [30], Phishunt [7], PhishStats [5], and Phish-
Tank [6]), as detailed in Appendix B) in detecting redirected phish-
ing sites, balancing accuracy and minimizing false positives, as
83.93% of detections occur after sites become inactive. This may be
due to Google not being a member of APWG [11] and lacks access
to its data. Additionally, prior studies [41] show that blocklists do
not share URL lists.

We analyze GSB’s detection of phishing campaigns using in-
tensive redirection, identifying 1,994 groups with 9,581 unique
source URLs. GSB detects only 189 groups, with 29 including the
destination URLs, highlighting its limitations in handling complex
redirection schemes.
Lifespan Analysis with GSB. Our 1 lifespan analysis reveals sig-
nificant differences between phishing sites detected by GSB and the
others not detected. GSB successfully detects 18.41% of the phish-
ing sites in our dataset, which have an average lifespan of 55.89
hours (2.33 days) and a median lifespan of 7.86 hours (0.33 days).
In contrast, the majority of phishing sites (81.59%) not detected by
GSB have shorter lifespans, averaging 35.96 hours (1.50 days) with
a median of 2.67 hours (0.11 days). This suggests that while GSB
detects only a small portion of phishing sites, the detected ones
tend to have longer lifespans than undetected ones.

Phishing sites using redirection evade detection longer, with
a mean lifespan of 5.5 days vs. 4.5 days for non-redirected sites,
though median lifespans are similar (5.7 vs. 5.8 hours). Statistical
analysis confirms redirected URLs are 8.24 times less likely to be
detected by GSB (𝑝 < 0.001, FET [21]), suggesting redirection aids
phishing campaigns.

GSB-detected phishing sites vary in lifespan by brand, with DHL-
targeted sites lasting the longest (61.98 hours) and AT&T-focused
sites averaging 41.29 hours. USPS sites show extreme skew, with
a 1.76-hour median lifespan but a 30.5-hour GSB detection time.
GSB’s average detection time (108.73 hours) lags behind 83.93% of
site takedowns, while the remaining 16.07% persist for an average
of 172.81 hours post-detection, ranging from 142.35 hours (AT&T)
to 202.18 hours (DHL).
GSB Detection Time. GSB detects phishing sites in an average of
108.73 hours (4.53 days), with a median of 5.80 hours, often after
sites are already taken down. Compared to the average phishing
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Figure 2: Lifespan CDF with Top 5 brands. Vertical bars indicate detection time by Google Safe Browsing.

Table 2: Phishing Site Lifespans and GSB Detection Time.

Category Average Median

1 Lifespan Analysis
GSB Detected (18.41%) 55.89h (2.33d) 7.86h (0.33d)
GSB Not Detected (81.59%) 35.96h (1.50d) 2.67h (0.11d)

2 GSB Detection Times
Typical URLs (11.44%) 68.27h (2.84d) 4.89h (0.20d)
Redirected URLs (6.97%) 130.89h (5.45d) 5.73h (0.24d)
Total URLs (18.41%) 108.73h (4.53d) 5.80h (0.24d)

3 Detection Scenarios
GSB detection before APWG 375.11h (15.63d) 28.62h (1.19d)
GSB detection after APWG 166.69h (6.95d) 0.81h (0.03d)
APWG & GSB detect active phishing 223.58h (9.32d) 20.51h (0.85d)
GSB detection after phishing is down 404.19h (16.84d) 23.45h (0.98d)

4 Long-tail Analysis (>4.5 days)
GSB Detected 274.93h (11.46d) 236.85h (9.87d)
GSB Undetected 273.58h (11.40d) 260.69h (10.86d)

site lifespan (54.04 hours), GSB’s detection is slow, particularly for
sites using evasion techniques like redirection. Our analysis ( 2
GSB detection time) shows that typical phishing URLs are detected
in 68.27 hours (median: 4.89 hours), while redirected URLs take sig-
nificantly longer – 130.89 hours (median: 5.73 hours), highlighting
a considerable exposure period for potential victims.
GSB Detection Time by Target Brand. As illustrated in Figure 2,
GSB’s detection speed varies by brand. AT&T-themed phishing
sites are detected fastest (20.9 hours), while Facebook-themed sites
take the longest (151 hours). Other brands fall in between, with
USPS at 30.5 hours, DHL at 105 hours, and Instagram at 143 hours.
Detection Scenarios.Our analysis of 3 GSB detection scenarios in
relation to APWG identification and site takedown reveals three dis-
tinct scenarios: (1) GSB detects before APWG, (2) GSB detects after
APWG, and (3) GSB detects after phishing site takedown. These sce-
narios show significant variations in phishing site lifespans. When
GSB detects before APWG, sites persist for an average of 375.11
hours (15.63 days). In cases where GSB is detected after APWG, the
average lifespan decreases to 166.69 hours (6.95 days). The average
time between APWG and GSB detection is 223.58 hours (9.32 days).
Most concerning is when GSB detects after-site deactivation, with
an average lifespan of 404.19 hours (16.84 days). This scenario in-
dicates a significant real-time detection gap. Early GSB detection
does not always ensure shorter lifespans, possibly due to blocking
delays or sophisticated evasion techniques employed by phishers.
Long-tail Analysis of GSB Detection Time. The 4 long-tail
analysis shows an interesting pattern in the persistence of these
threats, focusing on phishing sites that remain active for more
than the GSB average detection time of 4.5 days. The 16.44% of
phishing sites detected by GSB have an average lifespan of 274.93
hours (11.46 days) and a median of 236.85 hours (9.87 days). In

comparison, the 11.01% of phishing sites not detected by GSB have
a similar average lifespan of 273.58 hours (11.40 days) but a slightly
higher median of 260.69 hours (10.86 days). These results indicate
that a significant number of phishing sites persist for long periods,
regardless of whether GSB detects them.

Takeaway 2: GSB’s phishing detection shows limitations, iden-
tifying only 18.41% of sites in 4.5 days on average. 83.93% are
blocklisted after takedown, while others survive 7.2 more days.
Phishing sites using redirection evasion typically have longer
detection times. These findings suggest room for improvement
in detection speed and coverage.

6 Take-down Causes of Phishing Attacks (RQ2)
To address our second research question “What factors cause
phishingwebsites to be taken down?”, we investigate the dataset
to identify potential factors that may cause the takedown of phish-
ing websites. Our analysis reveals three primary categories of errors
leading to phishing site takedowns: DNS resolution failure, page
not found error, and timeout errors. Each category shows distinct
patterns across web-hosting services and self-hosted environments
and among different targeted brands.

In particular, we focus on HTTP response error codes and DNS
configurations by analyzing error logs generated during accessing
each phishing site. For DNS configuration, we use a combination of
the public suffix list [8] and reverse DNS to distinguish betweenweb
hosting (e.g., wix.com) and self-hosted websites. From the 90,356
phishing domains across the top ten major brands, we find three
primary error types: (1) DNS resolution failure errors, (2) page not
found errors, and (3) timeout errors. ‘DNS resolution failure’ error
occurs when a domain name cannot be resolved to IP addresses.
‘Page not found’ error arises when requested resources do not exist
on servers, while ‘timeout’ errors result when servers take too
long to respond. Each of these presents unique patterns across web
hosting and self-hosted environments.

6.1 General Causes of Takedowns
As shown in Table 3 and Table 8, our analysis of phishing domains
shows that DNS resolution failures are the most common takedown
cause (67.23%, 60,913 domains), followed by page not found errors
(27.19%, 24,573) and timeout errors (5.39%, 4,870).

Error distribution varies by hosting type and target brand.
Among web-hosted sites, ‘DNS resolution failure’ ranges from
35.42% (Google) to 82.95% (Rakuten), while self-hosted failures
range from 43.37% (DHL) to 78.46% (Google). ‘Page not found’ errors
also vary, from 9.09% (Rakuten) to 53.09% (AT&T) in web-hosted
phishing and 7.11% (Google) to 53.85% (DHL) in self-hosted sites.
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Table 3: Phishing Site (Root Domain) Analysis by Error Type, Hosting Method, and Brands.

Error Type Hosting
Method

Top 10 Phishing Brand (% of errors)
All Brands

FB (Meta) USPS AT&T WhatsApp DHL Instagram SwissPass Evri Google Rakuten

DNS
Resolution

Web Hosting 12,025 (60.05%) 605 (73.33%) 1,577 (44.11%) 796 (64.35%) 411 (60.35%) 1,093 (62.71%) 719 (61.40%) 68 (69.39%) 17 (35.42%) 73 (82.95%) 26,765 (66.64%)
Self-Hosted 5,984 (75.39%) 8,071 (60.94%) 282 (61.84%) 1,516 (71.27%) 1,098 (43.37%) 205 (64.26%) 267 (66.75%) 613 (61.73%) 397 (78.46%) 285 (73.26%) 34,148 (67.81%)

Page
Not Found

Web Hosting 7,072 (35.32%) 168 (20.36%) 1,898 (53.09%) 274 (22.15%) 240 (35.35%) 555 (31.84%) 395 (33.73%) 25 (25.51%) 25 (52.08%) 8 (9.09%) 11,442 (28.34%)
Self-Hosted 2,566 (32.33%) 4,150 (31.33%) 155 (33.99%) 336 (15.79%) 1,363 (53.85%) 100 (31.35%) 98 (24.50%) 312 (31.42%) 36 (7.11%) 80 (20.57%) 13,131 (26.05%)

Timeout Web Hosting 881 (4.40%) 49 (5.94%) 89 (2.49%) 164 (13.26%) 28 (4.11%) 93 (5.33%) 51 (4.35%) 5 (5.10%) 6 (12.50%) 7 (7.95%) 2,148 (5.36%)
Self-Hosted 334 (4.21%) 991 (7.48%) 17 (3.73%) 273 (12.83%) 64 (2.53%) 8 (2.51%) 33 (8.25%) 67 (6.75%) 73 (14.43%) 22 (5.66%) 2,722 (5.40%)

Total 28,862 (31.85%) 14,034 (15.49%) 4,018 (4.43%) 3,359 (3.71%) 3,204 (3.54%) 2,054 (2.27%) 1,563 (1.73%) 1,090 (1.20%) 554 (0.61%) 475 (0.52%) 90,356 (99.73%)

DNS Resolution Failures. ‘DNS resolution failures’ dominate the
observed takedown causes, accounting for 67.23% of all errors. This
prevalence suggests that DNS configuration is notable in phishing
site lifecycles. The wide range of DNS resolution failure error rates
across brands and hosting types (from 35.42% to 82.95%) indicates
significant variability in DNS-related takedowns. For web-hosted
sites, Rakuten-themed phishing shows the highest DNS resolution
failure error rate (82.95%), while Google-themed phishing has the
lowest (35.42%). With websites using self-hosting services, Google-
themed phishing exhibits a high rate (78.46%), contrasting with
DHL-themed phishing at the lower end (43.37%). These variations
suggest that DNS-related takedowns differ substantially based on
the targeted brand and hosting method.
Page Not Found Errors. As the second most common takedown
cause (27.19%), ‘page not found’ errors occur at similar rates in
web-hosting (28.34%) and self-hosting (26.05%) environments.
Among web-hosted sites, AT&T-themed phishing has the highest
rate (53.09%), while Rakuten-themed phishing has the lowest
(9.09%). For self-hosted sites, DHL-themed phishing leads (53.85%),
with Google-themed phishing at the lowest (7.11%), highlighting
brand-specific variations.
Timeout Errors. ‘Timeout’ errors, which are navigation and net-
work timeouts, while less frequent at 5.39%, show consistency be-
tween web-hosting (5.36%) and self-hosting service (5.40%) envi-
ronments. WhatsApp-themed phishing sites stand out with notably
higher timeout rates in both web-hosted (13.26%) and self-hosted
(12.83%) environments. In contrast, AT&T-themed sites have much
lower rates (2.49% web-hosting service, 3.73% self-hosted). These
differences indicate that certain brands may be associated with
higher rates of timeout errors in phishing attacks.

6.2 Takedown Causes Analysis
Understanding CDN usage in phishing infrastructures is crucial, as
these networks obscure the true origin of traffic, making detection
and blocking significantly harder [16, 28]. For phishing websites,
CDNs create an obfuscation layer that challenges traditional IP-
based blocking mechanisms [45].
CDN Usage in Phishing Websites. Our analysis, shown in Ta-
ble 10, reveals that 99.80% of phishing-related IPs use CDNs, render-
ing IP-based blocking largely ineffective. Despite a 4.13% decrease
in total phishing IPs, CDNs remain heavily utilized, with Web Ap-
plication Firewalls (WAFs) leading at 53.45%, followed by tradi-
tional CDNs (33.57%) and cloud services (12.78%). Among providers,
Cloudflare dominates WAFs (22.17M IPs, down 1.34%), Google leads
traditional CDNs (13.75M IPs, down 8.60%), and AWS is the top
cloud provider (5.3M IPs, down 3.63%).

As shown in Table 9, CDN usage varies by brand. WhatsApp
(83.44%) and USPS (96.99%) rely heavily on WAFs, while Meta ex-
hibits high cloud usage (40.33%). Rakuten favors WAFs (95.63%, up
24.41%), while AT&T deviates with 94.99% reliance on traditional
CDNs. These trends suggest that phishers adapt CDN choices based
on their target brands, potentially mimicking legitimate traffic pat-
terns or exploiting vulnerabilities in brand-associated services. The
widespread reliance on CDNs, particularly WAFs, presents a major
challenge for phishing mitigation strategies.

Takeaway 3: Phishing websites primarily cease operations due
to DNS resolution errors (67.23%), highlighting the critical role
of DNS modifications in the phishing lifecycle. The substantial
presence of ‘page not found’ errors (27.19%) suggests that con-
tent removal, including phisher-initiated takedowns, is a key
factor. Additionally, phishing websites overwhelmingly rely on
CDNs (99.80% of IPs), particularly Web Application Firewalls
(WAFs) at 53.45%, making traditional IP-based blocking less ef-
fective. Cloudflare dominates WAF services with 22.17 million
phishing-related IPs, while Google leads traditional CDN us-
age (13.75 million IPs). Phishers tailor their CDN strategies to
mimic legitimate traffic patterns, posing significant challenges
for detection and mitigation.

7 Phishing Volatility in the Lifespan (RQ3)

We answer the third research question, “What technical chang-
ing attempt occurs during a phishingwebsite’s lifetime, likely
serving both detection evasion and site improvement pur-
poses?”, by analyzing screenshots, DNS Records, HTTP headers,
and content of collected phishing site resources to track the volatil-
ity of phishing websites.

7.1 Visual Component Changes (Screenshots)
We analyze how phishing sites’ visual representation changes over
their lifespan by clustering screenshots based on similarity. Each
screenshot is resized, normalized, and processed to create a feature
vector representing its visual content. Screenshots with a similarity
score above 0.95 are clustered together. Hence, if more than two
clusters are found within each phishing campaign, it may indicate
that the phishing website’s appearance has changed during the
campaign.
Result. Figure 3 provides the statistics on the lifespan of phishing
sites that experience visual changes during their operation. The
data encompasses 71,665 phishing sites, categorized based on the
frequency of changes they experience. The analysis reveals that
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Figure 3: Phishing Visual Component Frequency of Changes.
The X-axis indicates the # of changes, and the Y-axis indicates
the lifespan. It reveals that phishing sites with more visual
changes tend to have longer lifespans.

phishing sites with more frequent visual changes tend to have
longer lifespans, as reflected in the median and average values. For
instance, phishing sites with fewer changes (1 time) have a median
lifespan of 1.93 hours and an average lifespan of 9.95 hours. In
contrast, sites that experience more changes (50-99 times) exhibit a
significantly longer median lifespan of 38.18 hours and an average
of 76.49 hours. The longest-living phishing sites, those with over
100 changes, have a median lifespan of 404.52 hours (about 17 days)
and an average of 358.35 hours, highlighting how frequent changes
help phishing sites evade detection for extended periods.

The quartile statistics (Q1 and Q3) further emphasize this trend.
Sites with fewer changes have lower quartile ranges, such as “1
time,” with a Q1 of 0.48 hours and a Q3 of 5.80 hours, indicating that
most of these sites are short-lived. However, for phishing sites with
over 100 changes, the Q1 jumps to 240.30 hours, and the Q3 reaches
480.75 hours, demonstrating that many of these sites persist for
long durations before being detected or taken down. These findings
underscore the effectiveness of visual changes in prolonging the
operational lifespan of phishing sites (see Appendix F).

Takeaway 4: Phishing sites frequently changing their visual
appearance tend to have significantly longer lifespans. Sites with
over 100 visual changes persist for amedian of 17 days, compared
to 1.93 hours for sites with only one change. This demonstrates
that visual modifications are effective for evading detection and
prolonging phishing campaigns.

7.2 DOM Changes from Discovery to Takedown
We analyze changes in website resources between discovery and
takedown for 286,237 phishing sites, with 10.5% (30,069) showing
final modifications. Our analysis reveals statistically significant
changes (𝑝 < 0.001, t-test) across various metrics, as shown in Ta-
ble 11. These changes suggest phishing sites evolve their structure
and behavior over time, likely to evade detection, improve effec-
tiveness, or adapt to target environments.
Structural Changes. Phishing sites simplify their structure be-
tween discovery and takedown. The total number of DOM elements
decreases by 11.58%, maximum DOM depth by 6.27%, and third-
party scripts by 12.37%. This reduction may help sites load faster
or appear less suspicious to detection systems. We detect these
changes using specific methods tailored to each technique; for ex-
ample, Canvas fingerprinting is identified through JavaScript API

call patterns and shows a 37.09% increase, particularly in phishing
sites that survive beyond the median lifespan.
Anti-Detection Techniques. Canvas fingerprinting increases by
37.09%, suggesting a shift toward more advanced visitor tracking,
while browser plugin detection and screen resolution checks de-
crease by 23.08% and 26.92%, respectively. We measure JavaScript
obfuscation using AST analysis and entropy scoring, observing a
9.30% decrease, while CSS obfuscation increases by 3.73%. These
shifts indicate that phishers may be moving obfuscation from
JavaScript—frequently scrutinized by security tools—to CSS, which
might receive less attention.
Dynamic Content & Obfuscation. The use of AJAX decreases
by 27.53%, marking the largest decline in this category, while event
listeners increase by 6.11%. Additionally, potential Base64 usage
drops by 6.69%, while potential Unicode escapes rise by 6.03%. These
shifts suggest a move from server-side dynamic content (AJAX)
to client-side interactivity (event listeners), making static analysis
more difficult. Obfuscation trends also diverge, with JavaScript
obfuscation decreasing by 9.30% and CSS obfuscation increasing
by 3.73%, as detailed in Table 11.

7.3 DNS Configuration Changes in Phishings
Our analysis of DNS configurations in phishing websites reveals
significant variations and changes between the discovery and take-
down phases. We examine DNS information associated with phish-
ing websites’ IP addresses, performing both forward and reverse
DNS lookups to understand how these configurations evolve. DNS
usage patterns vary considerably across different brands targeted
by phishing attacks. For instance, Facebook-themed phishing pre-
dominantly relies on 1e100.net (35.43% at discovery, increasing to
36.18% at takedown) and github.com (29.10% at discovery, decreas-
ing to 27.81% at takedown). In contrast, USPS-themed phishing
mainly utilizes cloudfront.net, with usage increasing slightly
from 48.76% at discovery to 49.46% at takedown. We observe flu-
idity in DNS services across phishing websites. 7.24% of the sites
exhibit changes in their DNS services during their lifetime, with
2.61% adding services, 2.73% removing services, and 1.90% switch-
ing services. This fluidity suggests active management of DNS
configurations by phishers.

We uncover significant modifications in DNS record configura-
tions, with a clear trend towards shorter time-to-live (TTL) dura-
tions. Our analysis reveals that 75.84% of phishing websites alter
their DNS settings between discovery and takedown. These values
span from 0 to 604,800 seconds, with an average of 1,559.87 sec-
onds and a median of 295 seconds. Notably, the majority of these
configurations are set to brief intervals: 81.44% at discovery and
81.89% at takedown are below 1800 seconds. Even more striking,
71.90% fall under 600 seconds and 51.10% are less than 300 seconds.
This tendency towards shorter durations intensifies over time, with
the mean value decreasing from 1,705.63 seconds at discovery to
1,383.54 seconds at takedown. In extreme cases, some are set to
0 seconds, effectively disabling caching. These short-lived DNS
configurations can enable fast-flux networks, a technique observed
in sophisticated phishing operations [14, 22]. Such changes, par-
ticularly using brief and decreasing durations, align with known
strategies for evading detection and complicating efforts to track
and block malicious infrastructure [18].
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7.4 Phishing Server Transition
Weanalyze server information fromHTTP headers and track changes
in server configurations on phishing websites, focusing on the
widely used Apache and Nginx servers [46]. Our findings show
that 13 websites using Nginx change versions over time, with 12
upgrading to newer versions and one downgrading. Notably, 2 of
the upgraded websites switch to lower minor versions. Similarly,
four websites using Apache changed versions, with one downgrad-
ing to a lower patch version. Phishing websites often update their
server configurations, typically upgrading to newer versions, but
occasional downgrades to lower versions suggest potential security
weaknesses that could be exploited for detection and mitigation.

Takeaway 5: Our analysis reveals that 30,069 phishing sites un-
dergo final changes before takedown, demonstrating significant
volatility in their characteristics over time. Notably, while most
features decreased, canvas fingerprinting showed a substantial
increase of 37.09%, suggesting an evolution in anti-detection
techniques. The contrasting trends in obfuscation methods, with
JS obfuscation decreasing by 9.30% while CSS obfuscation in-
creasing by 3.73%, indicate a shift in how phishing sites attempt
to conceal their behavior.

8 Discussion
Limitation. Our study relies on APWG URLs, and there is a time
frame during which victims may visit phishing websites before
APWG detects the URLs. However, previous research [40] suggests
that this time frame is minimal. Thus, while this limitation exists, it
likely has a negligible impact on our conclusions regarding phishing
activity patterns.
Recommendations.
• Given that GSB cannot detect 81.59% of phishing URLs in our
dataset, there is a clear need for more robust detection methods.
We recommend developing advanced machine learning mod-
els incorporating various features, including visual elements,
domain characteristics, and content analysis. Continuous moni-
toring in real-time systems can help detect subtle changes inweb-
site behavior over time. Additionally, implementing automated
takedown processes would enable rapid removal of detected
phishing sites, reducing the exposure for potential victims.

• We find that 16.07% of phishing sites persist for an additional
7.2 days even after being flagged by GSB. Anti-phishing efforts
should focus on continuous detection and rapid response mecha-
nisms to address this issue. This approach involves implementing
systems that constantly monitor flagged sites for infrastructure,
content, or behavior changes. Continuous detection allows us
to identify attempts to evade blocking measures and adapt our
defenses accordingly.

Ethics. Our data collection process adheres to strict ethical guide-
lines. We block form submissions on phishing sites using cus-
tomized Puppeteer event listeners. All data is anonymized with
one-way hashing and securely stored behind robust firewalls and
access controls. Any inadvertently captured personal data is imme-
diately scrubbed using regularly updated regex patterns and entity
recognition models. Automated scripts enforce data retention poli-
cies, and access is restricted to authorized researchers only. We
disclose our findings to GSB.

9 Related Work
Previous research has largely neglected the analysis of the phishing
ecosystem, with earlier studies primarily concentrating on under-
standing phishing attacks with detection mechanisms.
Phishing Ecosystem. Previous research [37, 38, 40] has explored
phishing attacks through controlled experiments. Moreover, ad-
ditional studies [10, 26, 33] have investigated current mitigation
strategies by analyzing how existing detection mechanisms func-
tion. These works focus on understanding the overall structure
of phishing websites and their evasion tactics. In contrast, our re-
search aims to delve deeper into the ecosystem with a lifetime of
phishing attacks and a longitudinal understanding of the phishing
ecosystem evolution.
Phishing Lifecycle. Research has examined the period between
phishing domain registration and when these domains are eventu-
ally detected and blocklisted [19, 35], providing insights into how
attackers attempt to prolong the lifespan of their phishing web-
sites. Additionally, honeypots have been used to analyze phishing
campaigns, capturing phishing attempts in real-time and reveal-
ing attacker tactics and strategies [26]. Another important area
of study explores victim traffic on phishing websites, particularly
in financial organizations, to understand how users interact with
these fraudulent sites and how attackers exploit this traffic before
detection [40]. Compared to previous work, our study focuses on a
more comprehensive analysis of the phishing lifecycle, examining
the various factors that contribute to the duration and evolution of
phishing websites.

10 Conclusion
Phishing websites remain active for an average of 2.25 days, and
their short-lived nature reduces the effectiveness of blocklist-based
defenses. GSB takes an average of 4.5 days to detect these sites,
indicating many phishing operations terminate before detection.
Moreover, our analysis reveals that 16.07% of sites persist for an
additional 7.2 days post-detection. Widespread evasion techniques
significantly hinder traditional detection methods, including short
DNS TTL values and frequent visual changes. Phishing sites with
extensive visual changes (100+) exhibited a median lifespan of
17 days, while those with minimal modifications lasted only 1.93
hours. The heavy reliance on popular hosting services further com-
plicates mitigation efforts. These findings highlight the limitations
of blocklist-based approaches and emphasize the need for sophis-
ticated detection methods. To combat rapidly evolving phishing
attacks, real-time and adaptive defense mechanisms are essential.
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A Comparison of Loger-lived Phishing Brands.

Our analysis of longer-lived phishing sites, defined as those
lasting beyond each brand’s median lifespan, reveals significant
variations across targeted brands (Table 4). While less common,
DHL-themed sites show remarkable persistence, with the highest
mean duration of 122.45 hours (approximately 5.10 days) and a
maximum lifespan of 750.26 hours (about 31.26 days). Facebook-
themed sites, being more prevalent, exhibit a high mean lifespan of
109.77 hours (about 4.57 days) and the highest recorded maximum
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of 799.52 hours (approximately 33.31 days). Despite lower overall
phishing incidence, Instagram shows a notably highmedian lifespan
of 32.22 hours for its persistent cases. USPS-themed sites present
an interesting case. They have the lowest median lifespan (6.95
hours) among longer-lived sites but still maintain a substantial
mean duration of 86.72 hours, indicating a skewed distribution
with persistent outliers. AT&T exhibits the shortest mean lifespan
(78.83 hours) among the longer-lasting group.

Table 4: Comparison of Longer-lived Top 5 Phishing Brands.

Metric (hours) USPS DHL Facebook AT&T Instagram

Mean 86.72 122.45 109.77 78.83 102.67
Median 6.95 18.59 29.92 24.74 32.22
90th Percentile 319.62 351.28 304.11 250.06 295.65
95th Percentile 353.36 535.42 350.61 324.42 341.59
Max 747.57 750.26 799.52 751.09 744.15

B Result of Anti-phishing Blocklists
As discussed in Section 5.2, GSB detected 18.41% of the phishing
URLs in our dataset. However, our analysis of seven other popular
anti-phishing blocklists reveals significantly lower detection rates,
as shown in Table 5. These results underscore the challenges of
anti-phishing blocklists in keeping pace with the rapidly evolving
phishing landscape. The stark contrast between GSB’s performance
and other blocklists suggests that GSB may employ more sophisti-
cated detection methods or access a broader range of data sources.
The generally lower detection rates for redirect URLs across all
blocklists indicate that phishers use redirection techniques to evade
detection effectively. This aligns with our findings in Section 7
regarding the prevalence of redirection in phishing attacks.

Table 5: Comparison of 7 Blocklist Phishing URLs.

Blocklist Typical URL Redirected URL

Matches Percentage Matches Percentage

malware-filter [2] 3,600 1.26% 2,400 0.84%
OpenPhish [3] 9,525 3.33% 7,163 2.50%
Phishunt [7] 761 0.27% 576 0.20%
Phishing Army [4] 756 0.26% 424 0.15%
Phishing Database [30] 10 0.00% 9 0.00%
PhishStats [5] 1 0.00% 0 0.00%
PhishTank [6] 0 0.00% 0 0.00%

C Usage of ASNs and TLDs in Phishing Sites
Our analysis of the distribution of Autonomous System Numbers
(ASNs) and Top-Level Domains (TLDs) in phishing sites reveals
interesting patterns in the infrastructure used by attackers. As
shown in Table 6, Cloudflare emerges as the dominant ASN, hosting
53.68% of the phishing sites in our dataset. This is followed by a
significant number of sites (7.68%) with unknown ASNs and then
by major cloud providers such as Google (4.55%), Alibaba (4.18%),
and Amazon (3.85%). These findings suggest that phishers often
leverage popular cloud and CDN services to host their malicious
content, potentially benefiting from these platforms’ reliability and
ability to obfuscate the true origin of the attacks. In terms of TLDs,
while the traditional ‘.com’ domain remains the most prevalent
(28.11%), we observe a notable use of newer or less common TLDs.
The ‘.shop’ TLD, for instance, accounts for 24.87% of the phishing

sites, indicating its popularity among attackers. Other frequently
used TLDs include ‘.top’ (7.54%), ‘.dev’ (5.83%), and ‘.io’ (3.41%). This
diversification in TLD usage may reflect attempts by phishers to
evade detection or to create more convincing fake domains that
align with their targeted brands or services.

Table 6: Distribution of ASNs and TLDs.

ASN Name Number (%) TLD Number (%)

13335 Cloudflare 153664 (53.68%) com 80455 (28.11%)
Unknown Unknown 21995 (7.68%) shop 71200 (24.87%)
15169 Google 13025 (4.55%) top 21568 (7.54%)
45102 Alibaba 11961 (4.18%) dev 16684 (5.83%)
16509 Amazon 11009 (3.85%) io 9754 (3.41%)
54113 Fastly 10520 (3.68%) org 7157 (2.50%)
132203 Tencent 8008 (2.80%) app 7104 (2.48%)
133199 SonderCloud 7618 (2.66%) cfd 6415 (2.24%)
27323 ServerStadium 4109 (1.44%) cn 5261 (1.84%)
14061 DigitalOcean 3626 (1.27%) me 4765 (1.67%)

D Statistical Results for Longer-lived Phishing

Table 7: Mann-Whitney U Test for Longer-lived Phishing.
Comparison U Statistic 𝑝-value Sample Sizes Significant

USPS vs DHL 8,889,555.5 2.20e-78 14733, 1674 Yes
USPS vs Facebook 148,623,111.5 0.00e+00 14733, 37454 Yes
USPS vs AT&T 20,392,662.0 2.51e-271 14733, 4278 Yes
USPS vs Instagram 9,014,440.0 1.40e-274 14733, 2270 Yes
DHL vs Facebook 22,780,213.0 4.33e-80 1674, 37454 Yes
DHL vs AT&T 3,052,938.5 8.43e-19 1674, 4278 Yes
DHL vs Instagram 1,344,337.5 1.09e-55 1674, 2270 Yes
Facebook vs AT&T 92,660,283.5 2.17e-63 37454, 4278 Yes
Facebook vs Instagram 38,870,796.0 6.88e-12 37454, 2270 Yes
AT&T vs Instagram 3,487,045.5 7.86e-79 4278, 2270 Yes

∗ All 𝑝-values are Bonferroni corrected; Significance level: 𝛼 = 0.05.

Mann-Whitney U tests [34] compare the lifespan distributions
of longer-lived phishing sites across different brands, as shown
in Table 7. The results reveal statistically significant differences (𝑝
< 0.05) between all brand pairs, even after applying the conserva-
tive Bonferroni correction for multiple comparisons. This indicates
that the persistence patterns for phishing attacks vary substantially
depending on the targeted brand. The most pronounced differences
are observed between USPS and Instagram (U = 9,014,440, 𝑝 =
1.40e-274) and USPS and AT&T (U = 20,392,662, 𝑝 = 2.51e-271), sug-
gesting markedly different attack persistence strategies for these
brands. Interestingly, while Facebook has the largest sample size
of a longer-lived span, its comparison with Instagram still shows
a highly significant difference (𝑝 = 6.88e-12), with the highest p-
value among all comparisons. This suggests that while there are
statistically significant differences in phishing campaign charac-
teristics between these social media platforms, they may be more
similar than to other brands in the study. However, it’s important
to note that all comparisons showed extremely low p-values (𝑝 <
0.05), indicating significant differences across all brand pairs in how
long-lived phishing attacks persist.

E Error Causes
Our analysis of error causes in accessing phishing sites reveals
distinct patterns across brands, as shown in Table 8. The most
common issue is DNS resolution failure (63.67%), suggesting that
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Table 8: Summary of Error Causes and Their Frequency based on FQDN.

Brand DNS resolution fail Page not found Timeout Access forbidden Protocol error DNS refused Total

All brands 182,239 (63.67%) 79,626 (27.82%) 19,468 (6.80%) 3,767 (1.32%) 1,070 (0.37%) 47 (0.02%) 286,217 (100.00%)

Facebook 64,933 (83.76%) 9,375 (12.09%) 2,302 (2.97%) 809 (1.04%) 103 (0.13%) 1 (0.00%) 77,523 (100.00%)
USPS 19,374 (60.38%) 10,142 (31.61%) 2,089 (6.51%) 413 (1.29%) 54 (0.17%) 17 (0.05%) 32,089 (100.00%)
AT&T 6,464 (65.88%) 2,870 (29.25%) 333 (3.39%) 115 (1.17%) 28 (0.29%) 1 (0.01%) 9,811 (100.00%)
WhatsApp 5,265 (72.52%) 951 (13.10%) 934 (12.86%) 97 (1.34%) 13 (0.18%) 0 (0.00%) 7,260 (100.00%)
Instagram 3,360 (70.81%) 1,094 (23.06%) 245 (5.16%) 34 (0.72%) 12 (0.25%) 0 (0.00%) 4,745 (100.00%)

Table 9: CDN Usage Analysis for Top Phishing Brands.

Brand
Total IPs

Change
CDN Type Usage

Typical Redirected CDN Cloud WAF

Facebook 13,823,887 12,070,911 -12.68% 35.87% 13.93% 49.74%
USPS 6,317,945 6,357,207 +0.62% 2.52% 0.27% 96.99%
AT&T 7,849,403 7,798,646 -0.65% 94.99% 0.56% 4.36%
WhatsApp 616,768 770,939 +25.00% 11.90% 4.20% 83.44%
Instagram 977,337 851,690 -12.86% 36.95% 14.84% 47.49%
DHL 342,154 348,068 +1.73% 9.79% 3.48% 86.14%
SwissPass 153,368 185,328 +20.84% 42.95% 4.11% 52.38%
Microsoft 131,772 119,623 -9.22% 10.51% 5.37% 83.97%
Rakuten 66,022 82,142 +24.41% 3.33% 0.76% 95.63%

All Feeds 43,263,524 41,477,792 -4.13% 33.57% 12.78% 53.45%

Table 10: CDN Changes and Top Providers based on IP.

Type Provider Typical Redirected Change (%)

CDN
Google 15,039,132 13,745,800 -1,293,332 (-8.60%)
Cloudfront 128,002 130,848 2,846 (+2.22%)
Fastly 42,311 48,535 6,224 (+14.71%)

Cloud
AWS 5,498,797 5,299,394 -199,403 (-3.63%)
Office365 276 194 -82 (-29.71%)
Oracle 39 25 -14 (-35.90%)

WAF Cloudflare 22,473,347 22,171,548 -301,799 (-1.34%)
Incapsula 24 25 1 (4.17%)

Total 43,181,928 41,396,369 -1,785,559 (-4.13%)

many phishing sites become inaccessible due to rapid takedowns
or short-lived, disposable domains. The second most frequent error,
“Page not found” (27.82%), likely results from content removal or
site restructuring by attackers, possibly as an evasion tactic or due
to changes in their infrastructure.

Interestingly, the distribution of errors varies across different
targeted brands. For instance, Facebook-related phishing sites show
a notably higher rate of DNS resolution failures (83.76%) than the
overall average. In contrast, USPS-targeted sites have a higher inci-
dence of “Page not found” errors (31.61%). Timeout errors, while less
frequent overall (6.80%), are particularly prominent in WhatsApp-
related phishing attempts (12.86%). These variations might reflect
differences in anti-phishing strategies employed by various brands
or unique characteristics of the phishing campaigns targeting them.
The relatively low occurrence of access forbidden errors (1.32%)
and protocol errors (0.37%) across all brands suggests that when
phishing sites are online, they generally remain accessible.

F Visual Component Changes

The data in Table 12 provides insights into the lifespan character-
istics of phishing websites that undergo visual component changes.

Table 11: Comprehensive Changes in Phishing Resources.

Metric Discovery Takedown Change

Site Complexity
Avg. Total Elements 211.06 186.62 -24.44 (-11.58%)
Avg. Max Depth 11.17 10.47 -0.70 (-6.27%)
Avg. Third-Party Scripts 2.91 2.55 -0.36 (-12.37%)

Anti-detection Techniques (%)
User Agent Checks 12.39 12.43 +0.04 (+0.32%)
Canvas Fingerprinting 4.53 6.21 +1.68 (+37.09%)
WebGL Fingerprinting 0.13 0.11 -0.02 (-15.38%)
Browser Plugin Detection 0.13 0.10 -0.03 (-23.08%)
Screen Resolution Checks 1.04 0.76 -0.28 (-26.92%)

Dynamic Content and Obfuscation (%)
Uses AJAX 10.79 7.82 -2.97 (-27.53%)
Dynamic DOM Manipulation 26.42 25.43 -0.99 (-3.75%)
Uses Event Listeners 27.19 28.85 +1.66 (+6.11%)
Potential Eval Usage 4.11 4.09 -0.02 (-0.49%)
Potential Base64 Usage 62.31 58.14 -4.17 (-6.69%)
Potential Hex Encoding 12.67 12.38 -0.29 (-2.29%)
Potential Unicode Escapes 14.09 14.94 +0.85 (+6.03%)

Obfuscation Techniques (%)
JS Obfuscation 5.16 4.68 -0.48 (-9.30%)
CSS Obfuscation 12.59 13.06 +0.47 (+3.73%)
∗ All changes are statistically significant (𝑝 < 0.001).
† Percentages in parentheses show relative change.
These changes include alterations to the website layout or shifts in
the targeted brands. The analysis covers 71,665 URLs, categorized
by the frequency of visual changes during their lifespan.

A notable trend emerges as the frequency of changes increases.
Websites with more frequent changes tend to have longer average
lifespans. For instance, URLs with only one change have an average
lifespan of 9.95 hours, while those with 15 changes survive an aver-
age of 18.31 hours. This trend continues, with URLs experiencing
50-99 changes lasting an average of 76.49 hours and those with
100+ changes persisting for an impressive 358.35 hours on average.
This positive correlation between change frequency and lifespan
suggests that frequent visual updates might be a strategy employed
by phishers to evade detection and prolong their operations.

However, it’s important to note the significant variability in
lifespans across all categories, as indicated by the large standard
deviations. For example, URLs with 100+ changes show a standard
deviation of 199.69 hours, highlighting the wide range of outcomes
even within this most persistent group. Interestingly, while only
3.49% of URLs fall into this 100+ changes category, they demon-
strate remarkably extended lifespans, with a median of 404.52 hours
(about 16.9 days). This suggests that a small proportion of highly
adaptive phishing sites contribute disproportionately to the overall
threat landscape by remaining active for extended periods.
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Table 12: Changed Phishing Lifespan Statistics (in hours).

Freq.∗ URLs (%) Q1 Med. Avg. Q3 Max Std.

1 6,014 (8.39%) 0.48 1.93 9.95 5.80 720 36.08
2 4,356 (6.08%) 0.97 2.42 9.84 7.25 624 32.54
3 3,817 (5.33%) 1.45 3.38 14.62 9.67 720 39.03
4 3,223 (4.50%) 1.93 3.87 12.53 10.63 576 34.86
5 2,918 (4.07%) 2.42 4.35 11.12 11.60 456 31.49
6 2,842 (3.97%) 2.90 4.83 15.43 12.08 672 43.47
7 4,756 (6.64%) 3.38 5.32 13.06 13.53 504 35.04
8 2,367 (3.30%) 3.87 6.28 12.83 13.05 384 31.46
9 2,162 (3.02%) 4.35 6.77 14.03 14.50 432 34.28
10 2,028 (2.83%) 4.83 7.25 13.07 14.98 333 26.89
11 1,995 (2.78%) 5.32 7.73 14.22 15.43 381 28.84
12 1,859 (2.59%) 5.80 8.22 14.15 15.92 360 27.45
13 1,762 (2.46%) 6.28 8.70 15.72 16.88 408 29.13
14 1,733 (2.42%) 6.77 9.18 16.11 17.37 384 29.30
15 1,713 (2.39%) 7.25 9.67 18.31 18.33 455 34.56
16 2,540 (3.54%) 7.73 10.15 17.41 18.80 408 30.13
17 1,545 (2.16%) 8.22 11.12 19.44 19.75 480 37.78
18 1,352 (1.89%) 8.70 11.60 19.79 20.23 456 36.26
19 1,256 (1.75%) 9.18 12.08 21.90 21.18 504 42.08

20-29 9,640 (13.45%) 10.63 14.65 21.76 23.57 624 33.60
30-49 7,637 (10.66%) 15.43 21.77 33.15 35.35 720 45.55
50-99 4,652 (6.49%) 28.03 38.18 76.49 84.82 893 91.61
100+ 2,498 (3.49%) 240.30 404.52 358.35 480.75 1440 199.69
Total 71,665 (100%) 3.38 14.65 30.62 28.03 1440 78.43
∗ Freq. stands for the frequency which phishing sites have changed
their website layout or target brands.

956


	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Our Crawler Design for Data Collection
	5 Post-detection Lifespan of Phishing (RQ1)
	5.1 Overall Post-detection Lifespan of Phishing
	5.2 Effectiveness of Google Safe Browsing

	6 Take-down Causes of Phishing Attacks (RQ2)
	6.1 General Causes of Takedowns
	6.2 Takedown Causes Analysis

	7 Phishing Volatility in the Lifespan (RQ3)
	7.1 Visual Component Changes (Screenshots)
	7.2 DOM Changes from Discovery to Takedown
	7.3 DNS Configuration Changes in Phishings
	7.4 Phishing Server Transition

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Comparison of Loger-lived Phishing Brands.
	B Result of Anti-phishing Blocklists
	C Usage of ASNs and TLDs in Phishing Sites
	D Statistical Results for Longer-lived Phishing
	E Error Causes
	F Visual Component Changes



